{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright CNES\n", "\n", "## Read and plot a SWOT-HR Raster products \n", "In this notebook, we show how to read the SWOT-HR raster 100m and 250m netcdf products with xarray and how to represent a variable on a map with cartopy." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Libraries\n", "Please note that apart from the libraries listed in the cell below, you need to install the h5netcdf library (conda install -c conda-forge h5netcdf). This will be used by th xarray.open_dataset function to read the netcdf files." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import xarray as xr\n", "import rioxarray\n", "from pyproj import CRS\n", "import os\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. Read a SWOT-HR Raster netcdf product with xarray\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:                  (y: 75, x: 59)\n",
       "Coordinates:\n",
       "  * x                        (x) float64 2.712e+05 2.713e+05 ... 2.77e+05\n",
       "  * y                        (y) float64 5.558e+05 5.559e+05 ... 5.632e+05\n",
       "Data variables: (12/39)\n",
       "    cross_track              (y, x) float32 ...\n",
       "    crs                      object ...\n",
       "    dark_frac                (y, x) float32 ...\n",
       "    geoid                    (y, x) float32 ...\n",
       "    height_cor_xover         (y, x) float32 ...\n",
       "    ice_clim_flag            (y, x) float32 ...\n",
       "    ...                       ...\n",
       "    water_frac               (y, x) float32 ...\n",
       "    water_frac_uncert        (y, x) float32 ...\n",
       "    wse                      (y, x) float32 ...\n",
       "    wse_qual                 (y, x) float32 ...\n",
       "    wse_qual_bitwise         (y, x) float64 ...\n",
       "    wse_uncert               (y, x) float32 ...\n",
       "Attributes: (12/50)\n",
       "    Conventions:                   CF-1.7\n",
       "    title:                         Level 2 KaRIn High Rate Raster Data Product\n",
       "    source:                        Ka-band radar interferometer\n",
       "    history:                       Wed Jun  5 21:08:21 2024: ncks -d x,271195...\n",
       "    platform:                      SWOT\n",
       "    references:                    V1.2.1\n",
       "    ...                            ...\n",
       "    x_max:                         315500.0\n",
       "    y_min:                         497300.0\n",
       "    y_max:                         643000.0\n",
       "    institution:                   CNES\n",
       "    product_version:               01\n",
       "    NCO:                           netCDF Operators version 5.0.6 (Homepage =...
" ], "text/plain": [ "\n", "Dimensions: (y: 75, x: 59)\n", "Coordinates:\n", " * x (x) float64 2.712e+05 2.713e+05 ... 2.77e+05\n", " * y (y) float64 5.558e+05 5.559e+05 ... 5.632e+05\n", "Data variables: (12/39)\n", " cross_track (y, x) float32 ...\n", " crs object ...\n", " dark_frac (y, x) float32 ...\n", " geoid (y, x) float32 ...\n", " height_cor_xover (y, x) float32 ...\n", " ice_clim_flag (y, x) float32 ...\n", " ... ...\n", " water_frac (y, x) float32 ...\n", " water_frac_uncert (y, x) float32 ...\n", " wse (y, x) float32 ...\n", " wse_qual (y, x) float32 ...\n", " wse_qual_bitwise (y, x) float64 ...\n", " wse_uncert (y, x) float32 ...\n", "Attributes: (12/50)\n", " Conventions: CF-1.7\n", " title: Level 2 KaRIn High Rate Raster Data Product\n", " source: Ka-band radar interferometer\n", " history: Wed Jun 5 21:08:21 2024: ncks -d x,271195...\n", " platform: SWOT\n", " references: V1.2.1\n", " ... ...\n", " x_max: 315500.0\n", " y_min: 497300.0\n", " y_max: 643000.0\n", " institution: CNES\n", " product_version: 01\n", " NCO: netCDF Operators version 5.0.6 (Homepage =..." ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dir_swot = \"../docs/data/swot/\"\n", "file_swot_raster100 = os.path.join(\n", " dir_swot,\n", " \"SWOT_L2_HR_Raster_100m\",\n", " \"SWOT_L2_HR_Raster_100m_UTM22N_N_x_x_x_015_033_082F_20240509T115817_20240509T115835_PIC0_01_extract.nc\",\n", ")\n", "# read data with xarray\n", "xr_swot_raster100 = xr.open_dataset(file_swot_raster100)\n", "# force xarray to acknowledge the CRS \n", "xr_swot_raster100.rio.set_crs(CRS.from_user_input(xr_swot_raster100.crs.projected_crs_name).to_epsg(), inplace=True)\n", "\n", "xr_swot_raster100" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Should you want to quickly see what the data looks like, just use the following line. Lower in the notebook we will try to have something fancier." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAGwCAYAAAAdapmWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAClNklEQVR4nOzdd1xT1/sH8E8YYagElV0RceJCHC3FgYuKVuusVcRNpVpcUBcVtxWLCxyVtg5cOKvWVqUijjrQ1oFbFNSvM2pFiKDs+/uDH1dT7rkmIZDQPO++8qq5546TSxIO9z7PcyQcx3EghBBCCCF6w0jXHSCEEEIIIcpogEYIIYQQomdogEYIIYQQomdogEYIIYQQomdogEYIIYQQomdogEYIIYQQomdogEYIIYQQomdMdN0BQ1JYWIjHjx+jSpUqkEgkuu4OIYQQPcZxHF69egUnJycYGZXd9ZTs7Gzk5uaWej9SqRTm5uZa6BEBaIBWrh4/fgxnZ2ddd4MQQkgF8uDBA9SoUaNM9p2dnQ1XFyvIn+WVel8ODg64e/cuDdK0hAZo5ahKlSoAij5sVlZWOu6Nftu8ZiazTSIRnvyikkUBc5vegxaUuk+EEFKeFAoFnJ2d+d8dZSE3NxfyZ3m4f6E5rKoYa7wfxasC1GxxEbm5uTRA0xIaoJWj4tuaVlZWNEB7DwsLM2Yba4BmKTJAo/NNCKmoyiMkxqqSEawqleI2aiHNGqltNEAjhBBCDB3HFT1Ksz3RKhqgEUIIIYaOBmh6hwZoRC+NGPO92tsc3DGR2bZ3Swizrbf/UmbbtnWT1O7HwJGL1d6GkP+iY7+OZbZ16LWyHHtCSMVDAzRCCCHEwNEFNP1DAzRCCCHEwHGcEThO8yQBjkZoWkczCRBCCCGE6BmdDtBmz54NiUSi9HBzc1NaJzExEZ06dUKlSpVgZWUFb29vvHnzhm/v2bMnatasCXNzczg6OmLIkCF4/Pix0j4uX76Mdu3awdzcHM7OzoiIiCjRl507d8LNzQ3m5uZo2rQpDhw4oNTOcRxmzpwJR0dHWFhYwMfHB7dv39bi2SCEEEJ0g+Mk/FU0zR40O4626fwWZ+PGjXH48GH+uYnJ2y4lJiaia9euCA0NxYoVK2BiYoJLly4pTXnRsWNHfPvtt3B0dMSjR48wadIkfP755zh9+jSAokJ/Xbp0gY+PD6Kjo3HlyhWMHDkS1tbWCAwMBACcPn0afn5+CA8PR48ePRAbG4vevXvjwoULaNKkCQAgIiICy5cvx4YNG+Dq6ooZM2bA19cX169fp6J8eqLbF5Fa36e2A/5/WjGN2RY4bqFWj0WIrpmasGsTEv1SyBmhsBS3OEuzLRGm8wGaiYkJHBwcBNuCg4Mxfvx4TJv29pdagwYNSqxTzMXFBdOmTUPv3r2Rl5cHU1NTbNmyBbm5uVi3bh2kUikaN26MpKQkLF26lB+gRUVFoWvXrpg8eTIAYN68eYiPj8fKlSsRHR0NjuMQGRmJsLAw9OrVCwCwceNG2NvbY+/evRg4cKBg/3NycpCTk8M/VygUGpwhQgghhBganQ95b9++DScnJ9SuXRv+/v64f/8+AODZs2c4e/Ys7Ozs0Lp1a9jb26N9+/Y4efIkc19paWnYsmULWrduDVNTUwBFV+G8vb0hlUr59Xx9fZGcnIyXL1/y6/j4+Cjty9fXF4mJiQCAu3fvQi6XK60jk8ng6enJryMkPDwcMpmMf9A8nIQQQvRR6W5vli7BgAjT6Rn19PRETEwM4uLisHr1aty9exft2rXDq1evcOfOHQBFcWqjRo1CXFwcWrRogc6dO5eI/Zo6dSoqVaqE6tWr4/79+/j111/5NrlcDnt7e6X1i5/L5XLRdd5tf3c7oXWEhIaGIiMjg388ePBA5XNDCCGElBcaoOkfnZ7Rbt26oX///nB3d4evry8OHDiA9PR07NixA4WFhQCAr776CiNGjEDz5s2xbNkyNGjQAOvWrVPaz+TJk3Hx4kUcOnQIxsbGGDp0qF6k/JqZmfHzbtL8m4QQQghRlc5j0N5lbW2N+vXrIyUlBZ06dQIANGrUSGmdhg0b8rdBi9nY2MDGxgb169dHw4YN4ezsjDNnzsDLywsODg54+vSp0vrFz4tj31jrvNtevMzR0VFpHQ8Pj1K+alIeYqKnMNuGjy6Z1VtWKBGAGJI23VfrugtERUVZnJpnYlIWp/bp1TXJzMxMpKamwtHREbVq1YKTkxOSk5OV1rl16xZcXFyY+yi+8lYcnO/l5YU///wTeXl5/Drx8fFo0KABqlatyq+TkJCgtJ/4+Hh4eXkBAFxdXeHg4KC0jkKhwNmzZ/l1CCGEkIqKbnHqH52e0UmTJuH48eO4d+8eTp8+jT59+sDY2Bh+fn6QSCSYPHkyli9fjl27diElJQUzZszAzZs3ERAQAAA4e/YsVq5ciaSkJPzvf//DkSNH4Ofnhzp16vADp0GDBkEqlSIgIADXrl3D9u3bERUVhZCQt3MzTpgwAXFxcViyZAlu3ryJ2bNn49y5cxg7tmgeOYlEgokTJ2L+/PnYt28frly5gqFDh8LJyQm9e/cu9/NGCCGEaFMhJyn1g2iXTm9xPnz4EH5+fnjx4gVsbW3Rtm1bnDlzBra2tgCAiRMnIjs7G8HBwUhLS0OzZs0QHx+POnXqAAAsLS2xe/duzJo1C1lZWXB0dETXrl0RFhYGMzMzAEXZlocOHUJQUBBatmwJGxsbzJw5ky+xAQCtW7dGbGwswsLC8O2336JevXrYu3cvXwMNAKZMmYKsrCwEBgYiPT0dbdu2RVxcHNVAI4QQQojWSTh9iKY3EAqFAjKZDBkZGZQwUM70JQaNEEJUVR6/M4qP8fBCB1hV1vyajSIzHzVaHKPfb1qkV0kChJSVrDfsu/lrVk1lttlY5wkur2IpvBwAOvdZoXrHCCFED1CSgP6hqD5CCCGEED1DV9AIIYQQA0dX0PQPDdAIIYQQA1faUhlUZkP76IwSQgghhOgZuoJGDEJQMLuC/8plocw2Vo7z85dmzG22rJnMbPP/chGzjRBCdIXjSnebkupBaB8N0AghhBADRzFo+oducRJCCCGE6Bm6gkYIIYQYOK6U0zXRFTTtowEaIYQQYuDoFqf+oQEaMXhjg8O1ur/92yYy29b9wJ61oK5zpuDywkL2F1+HXitV7hchhLBwMAJXiqin0mxLhNEZJYQQQgjRM3QFjRBCCDFwdItT/9AAjRBCCDFwNEDTP3SLkxBCCCFEz9AVNEK0rPvASGbbmlXsJIFnaeaCy62r5JW2S4QQIkoXV9AePXqEqVOn4uDBg3j9+jXq1q2L9evXo1WrVv+/Tw6zZs3Czz//jPT0dLRp0warV69GvXr1NO5nRUJX0AghhBADVzxAK81DHS9fvkSbNm1gamqKgwcP4vr161iyZAmqVq3KrxMREYHly5cjOjoaZ8+eRaVKleDr64vs7Gxtv3y9RFfQCCGEEFKuvv/+ezg7O2P9+vX8MldXV/7fHMchMjISYWFh6NWrFwBg48aNsLe3x969ezFw4MBy73N5oytohBBCiIHT1hU0hUKh9MjJyRE83r59+9CqVSv0798fdnZ2aN68OX7++We+/e7du5DL5fDx8eGXyWQyeHp6IjExsWxPhp6gARohhBBi4Ar/f6qn0jwAwNnZGTKZjH+EhwsXAr9z5w4fT/bHH39gzJgxGD9+PDZs2AAAkMvlAAB7e3ul7ezt7fm2/zq6xUlIOfoy6Htdd4EQQsrMgwcPYGVlxT83MzMTXK+wsBCtWrXCggULAADNmzfH1atXER0djWHDhpVLX/UdXUEjhBBCDJy2bnFaWVkpPVgDNEdHRzRq1EhpWcOGDXH//n0AgIODAwDg6dOnSus8ffqUb/uvowEaIYQQYuDKO4uzTZs2SE5OVlp269YtuLi4AChKGHBwcEBCQgLfrlAocPbsWXh5eZX+BVcAdIuTEEIIMXDlXQctODgYrVu3xoIFC/DFF1/gr7/+wk8//YSffvoJACCRSDBx4kTMnz8f9erVg6urK2bMmAEnJyf07t1b435WJDRAI4QQQki5+vDDD7Fnzx6EhoZi7ty5cHV1RWRkJPz9/fl1pkyZgqysLAQGBiI9PR1t27ZFXFwczM2Fi3r/10g4juN03QlDoVAoIJPJkJGRoRRESQghhPxbefzOKD7GpYR+qFLZVOP9vMrMQ7POv9DvNy2iK2iEEEKIgeMAlOZyDV3p0T5KEiCEEEII0TN0BY0QQggxcBwk4FCKJIFSbEuE0QCNEEIIMXDlncVJ3o9ucRJCCCGE6Bm6gkYIIYQYulJeQQNdQdM6GqARQgghBo7jSnebkgp2aR/d4iSEEEII0TN0BY0QLVu5LJTZxhWytxv3Tbjg8u3rJzG3GTBiscr9IoQQlkKu6FGa7Yl20QCNEEIIMXCUxal/aIBGCCGEGDgaoOkfikEjhBBCCNEzOh2gzZ49GxKJROnh5uamtE5iYiI6deqESpUqwcrKCt7e3njz5g0A4N69ewgICICrqyssLCxQp04dzJo1C7m5uUr7uHz5Mtq1awdzc3M4OzsjIiKiRF927twJNzc3mJubo2nTpjhw4IBSO8dxmDlzJhwdHWFhYQEfHx/cvn1by2eEEEIIKX/FV9BK8yDapfNbnI0bN8bhw4f55yYmb7uUmJiIrl27IjQ0FCtWrICJiQkuXboEI6OiceXNmzdRWFiIH3/8EXXr1sXVq1cxatQoZGVlYfHiouBphUKBLl26wMfHB9HR0bhy5QpGjhwJa2trBAYGAgBOnz4NPz8/hIeHo0ePHoiNjUXv3r1x4cIFNGnSBAAQERGB5cuXY8OGDXB1dcWMGTPg6+uL69evw9zcvLxOF6kAjI3Y0bK1a7xhth3aNV5wuawSffERQspWUZmN0m1PtEvnAzQTExM4ODgItgUHB2P8+PGYNm0av6xBgwb8v7t27YquXbvyz2vXro3k5GSsXr2aH6Bt2bIFubm5WLduHaRSKRo3boykpCQsXbqUH6BFRUWha9eumDx5MgBg3rx5iI+Px8qVKxEdHQ2O4xAZGYmwsDD06tULALBx40bY29tj7969GDhwoHZPCiGEEEIMms5j0G7fvg0nJyfUrl0b/v7+uH//PgDg2bNnOHv2LOzs7NC6dWvY29ujffv2OHnypOj+MjIyUK1aNf55YmIivL29IZVK+WW+vr5ITk7Gy5cv+XV8fHyU9uPr64vExEQAwN27dyGXy5XWkclk8PT05NcRkpOTA4VCofQghBBC9E3xZOmleRDt0ukAzdPTEzExMYiLi8Pq1atx9+5dtGvXDq9evcKdO3cAFMWpjRo1CnFxcWjRogU6d+7MjP1KSUnBihUr8NVXX/HL5HI57O3tldYrfi6Xy0XXebf93e2E1hESHh4OmUzGP5ydnd97TgghhJDyRjFo+kentzi7devG/9vd3R2enp5wcXHBjh070LBhQwDAV199hREjRgAAmjdvjoSEBKxbtw7h4cpFPR89eoSuXbuif//+GDVqVPm9CBGhoaEICQnhnysUChqkEUIIIeS9dB6D9i5ra2vUr18fKSkp6NSpEwCgUaNGSus0bNiQvw1a7PHjx+jYsSNat26Nn376SanNwcEBT58+VVpW/Lw49o21zrvtxcscHR2V1vHw8GC+HjMzM5iZmYm+5nft3RIiuLy3/1KV96GquB0TBJcXivwVZGLMLoOfkSVltj1LE36bmUnZUaV2VXOZbU/ThI9V2YLdv/wC9uvKzWe32TP6YWzM7rtDdfaFad/+Ucw2QgjRFaqDpn90HoP2rszMTKSmpsLR0RG1atWCk5MTkpOTlda5desWXFxc+OePHj1Chw4d0LJlS6xfv57P8Czm5eWFP//8E3l5efyy+Ph4NGjQAFWrVuXXSUhIUNouPj4eXl5eAABXV1c4ODgoraNQKHD27Fl+HUIIIaSiKs7iLM2DaJdOB2iTJk3C8ePHce/ePZw+fRp9+vSBsbEx/Pz8IJFIMHnyZCxfvhy7du1CSkoKZsyYgZs3byIgIADA28FZzZo1sXjxYjx//hxyuVwpLmzQoEGQSqUICAjAtWvXsH37dkRFRSndepwwYQLi4uKwZMkS3Lx5E7Nnz8a5c+cwduxYAIBEIsHEiRMxf/587Nu3D1euXMHQoUPh5OSE3r17l+s5I4QQQsh/n05vcT58+BB+fn548eIFbG1t0bZtW5w5cwa2trYAgIkTJyI7OxvBwcFIS0tDs2bNEB8fjzp16gAousqVkpKClJQU1KhRQ2nf3P8P52UyGQ4dOoSgoCC0bNkSNjY2mDlzJl9iAwBat26N2NhYhIWF4dtvv0W9evWwd+9evgYaAEyZMgVZWVkIDAxEeno62rZti7i4OKqBRgghpMKjW5z6R8JxdGGyvCgUCshkMmRkZMDKyqpEO8WgvVWRY9Cyc9kXpvsM1v7PkhDy3/S+3xnaPMbxvUNQuRL7e/x9MrNy0b73pjLtq6HRqyQBQ1cWAzGWrl/oPlh91bJpzLaeg5Yx2zb9NEVwuV/AolL3iRBCDBFdQdM/epUkQAghhBBC6AoaIYQQYvDoCpr+oQEaIYQQYuAK//9Rmu2JdtEtTkIIIYQQPUNX0HRg2/oZsLAoOcPAkMAIHfRGd4KCF2q0XUU+Tzs3TGK29R+2uBx7Qggh7yjtfJp0i1PraIBGCCGEGDiKQdM/dIuTEEIIIUTP0BU0QgghxMBxKN18mlTxXvtogEYIIYQYOLrFqX9ogKYDA0fMq5BTYeza8I1G230+bImWe1JxUSIAIYQQVdAAjRBCCDFwHFfKW5x0j1PrKEmAEEIIMXDFtzhL86joUlNTERYWBj8/Pzx79gwAcPDgQVy7dk0n/aEBGiGEEGLgOC08KrLjx4+jadOmOHv2LHbv3o3MzEwAwKVLlzBr1iyd9IkGaIQQQggxaNOmTcP8+fMRHx8PqVTKL+/UqRPOnDmjkz6pFIO2fPlytXc8YsQIVKlSRe3tiP4SC/bfFxtcjj0hhBCiTbrO4ly4cCFCQ0MxYcIEREZGAgCys7PxzTffYNu2bcjJyYGvry9++OEH2Nvbl+pYQq5cuYLY2NgSy+3s7PDPP/9o/XiqUGmANnHiRNSoUQPGxsYq7fTBgwfo0aMHDdAIIYSQCkCXSQJ///03fvzxR7i7uystDw4Oxv79+7Fz507IZDKMHTsWffv2xalTpzQ/GIO1tTWePHkCV1dXpeUXL17EBx98oPXjqULlLM5z587Bzs5OpXVpYEYIIYQYHoVCofTczMwMZmYl554ulpmZCX9/f/z888+YP38+vzwjIwNr165FbGwsOnXqBABYv349GjZsiDNnzuDjjz/War8HDhyIqVOnYufOnZBIJCgsLMSpU6cwadIkDB06VKvHUpVKMWizZs1C5cqVVd7pt99+i2rVqmncKUIIIYSUH21lcTo7O0Mmk/GP8PBw0eMGBQWhe/fu8PHxUVp+/vx55OXlKS13c3NDzZo1kZiYqPXXv2DBAri5ucHZ2RmZmZlo1KgRvL290bp1a4SFhWn9eKpQ6QqauhkMoaGhGnWGEEIIIeVPW7c4Hzx4oFSIXezq2bZt23DhwgX8/fffJdrkcjmkUimsra2Vltvb20Mul2veUQapVIqff/4ZM2bMwNWrV5GZmYnmzZujXr16Wj+WqqhQLVHZge0TmW09B0WWWz8IMSQXE75ktjXvvKYce0LI+1lZWak0U86DBw8wYcIExMfHw9zcvBx6Ju7kyZNo27YtatasiZo1a+q6OwA0KLPx4sULBAUFoVGjRrCxsUG1atWUHoQQQgipWMq7UO358+fx7NkztGjRAiYmJjAxMcHx48exfPlymJiYwN7eHrm5uUhPT1fa7unTp3BwcNDiKy/SqVMnuLq64ttvv8X169e1vn9NqH0FbciQIUhJSUFAQADs7e0hkVT86sGEEEKIISttsVl1t+3cuTOuXLmitGzEiBFwc3PD1KlT4ezsDFNTUyQkJKBfv34AgOTkZNy/fx9eXl6l6Kmwx48fY9u2bdi6dSsWLlwId3d3+Pv7w8/PDzVq1ND68VSh9gDtxIkTOHnyJJo1a1YW/SGEEELIf1yVKlXQpEkTpWWVKlVC9erV+eUBAQEICQlBtWrVYGVlhXHjxsHLy0vrGZwAYGNjg7Fjx2Ls2LG4e/cuYmNjsWHDBoSGhsLb2xtHjhzR+jHfR+0BmpubG968eVMWfSGEEEKIDui6UK2QZcuWwcjICP369VMqVFvWXF1dMW3aNDRr1gwzZszA8ePHy/yYQiQcp17ext9//41p06Zh5syZaNKkCUxNTZXaVQkONFQKhQIymQwZGRl0ngghhIgqj98ZxcfYs/ErVLKUvn8DhqzXuegz9McK//vt1KlT2LJlC3bt2oXs7Gz06tUL/v7+6Nq1a7n3Re0raNbW1lAoFHzhuGIcx0EikaCgoEBrnSOEEEJI2dPlTAL6IDQ0FNu2bcPjx4/xySefICoqCr169YKlpaXO+qT2AM3f3x+mpqaIjY2lJAFCCCGEVHh//vknJk+ejC+++AI2Nja67g4ADQZoV69excWLF9GgQYOy6A8hhBBCylnRFbTSxKBpsTM6UBbze5aW2gO0Vq1a4cGDBzRAI4QQQv4jDP0WJwCkpqYiMjISN27cAAA0atQIEyZMQJ06dXTSH7UHaOPGjcOECRMwefJkNG3atESSwL9noyeEEF2TX+7DbHNw31OOPSGq4J4K17mS2Gt/DkZCAOCPP/5Az5494eHhgTZt2gAouqrWuHFj/Pbbb/jkk0/KvU9qD9AGDBgAABg5ciS/TCKRUJIAIYQQUmFJwKE0MeUVOx592rRpCA4OxsKFC0ssnzp1asUYoN29e7cs+kEIIYQQHTH0W5w3btzAjh07SiwfOXIkIiMjy79D0GCA5uLiUhb9IIQQQgjRCVtbWyQlJaFevXpKy5OSkmBnZ6eTPqk0QNu3bx+6detWIt6M5cCBA+jYsSMsLCxK1TlCCCGElD1Dv4I2atQoBAYG4s6dO2jdujWAohi077//HiEhITrpk0oDtD59+kAul8PW1lalnQ4cOBBJSUmoXbt2qTpnaLavnyS4fMCIxeXcE0LK3qWjAcw2iYT9be/eYZ3g8tuJg5nb1PPSbiJAZkpnZlthoTGzzar+Ia3247+KkgHKnz5O9VSeZsyYgSpVqmDJkiUIDQ0FADg5OWH27NkYP368Tvqk0gCN4zgMHz4cZmZmKu00Ozu7VJ0ihBBCCCkvEokEwcHBCA4OxqtXrwAUTeiuSyoN0IYNG6bWTv39/Sv0XFyEEEKIISnkih6l2f6/4NmzZ0hOTgYAuLm5qXznsCyoNEBbv359mRx89uzZmDNnjtKyBg0a4ObNm/zzxMRETJ8+HWfPnoWxsTE8PDzwxx9/8PFt3333Hfbv34+kpCRIpVKkp6eXOM79+/cxZswYHD16FJUrV8awYcMQHh4OE5O3L//YsWMICQnBtWvX4OzsjLCwMAwfPlxpP6tWrcKiRYsgl8vRrFkzrFixAh999JH2TgghhBCiA1wpy2yUrkSH7r169Qpff/01tm7disLCQgCAsbExBgwYgFWrVkEmk5V7n4zK/Yj/0rhxYzx58oR/nDx5km9LTExE165d0aVLF/z111/4+++/MXbsWBgZve12bm4u+vfvjzFjxgjuv6CgAN27d0dubi5Onz6NDRs2ICYmBjNnzuTXuXv3Lrp3746OHTsiKSkJEydOxJdffok//viDX2f79u0ICQnBrFmzcOHCBTRr1gy+vr549uxZGZwVQgghpPwUJwmU5lGRffnllzh79iz279+P9PR0pKen4/fff8e5c+fw1Vdf6aRPEo7T3WmdPXs29u7di6SkJMH2jz/+GJ988gnmzZv33n3FxMRg4sSJJa6gHTx4ED169MDjx49hb28PAIiOjsbUqVPx/PlzSKVSTJ06Ffv378fVq1f57QYOHIj09HTExcUBADw9PfHhhx9i5cqVAIDCwkI4Oztj3LhxmDZtmkqvV6FQQCaTYf7sYJibl4znq2GXJ7idWJLAr7GaZZf0GrRUo+0I0ZakI+wkARNjdsFrm6oZgstzcqXMbcTa6rfexGwjRJeKf2dkZGSUWdhQ8TG2/PQ1LC1VizMX8vp1DvwDfyjTvpalSpUq4Y8//kDbtm2Vlp84cQJdu3ZFVlZWufdJ51fQbt++DScnJ9SuXRv+/v64f/8+gKL7wGfPnoWdnR1at24Ne3t7tG/fXukKmyoSExPRtGlTfnAGAL6+vlAoFLh27Rq/jo+Pj9J2vr6+SEwsyiTKzc3F+fPnldYxMjKCj48Pv46QnJwcKBQKpQchhBCibziU8gqarl9AKVWvXl3wNqZMJkPVqlV10CMdD9A8PT0RExODuLg4rF69Gnfv3kW7du3w6tUr3LlzB0DRVbZRo0YhLi4OLVq0QOfOnXH79m2VjyGXy5UGZwD453K5XHQdhUKBN2/e4J9//kFBQYHgOsX7EBIeHg6ZTMY/nJ2dVe43IYQQUl6Ky2yU5lGRhYWFISQkROl3ulwux+TJkzFjxgyd9EntmQS0qVu3bvy/3d3d4enpCRcXF+zYsQMNGzYEAHz11VcYMWIEAKB58+ZISEjAunXrEB4erpM+qyM0NFSpwJ1CoaBBGiGEEKIHmjdvDonk7cDy9u3bqFmzJmrWrAmgKMHQzMwMz58/10kcmkYDtISEBCQkJODZs2d8tkOxdeuEi0iqwtraGvXr10dKSgo6deoEAGjUqJHSOg0bNuRvg6rCwcEBf/31l9Kyp0+f8m3F/y9e9u46VlZWsLCwgLGxMYyNjQXXKd6HEDMzM8HaceOCZ2vtHr2pcSGz7dMBkcy2pd+HCi5v5PqauU3XL6JU7hepmA7tYhdk7PL5cq0ey6PTWmbbtT+HM9syX1sKLjeSsD8LFGdG9Nnr1E7Cy1/ll1sfDHEmgd69e+u6C6LUHqDNmTMHc+fORatWreDo6Kg0+iytzMxMpKamYsiQIahVqxacnJz4eiTFbt26pXTl7X28vLzw3Xff4dmzZ/x8WvHx8bCysuIHf15eXjhw4IDSdvHx8fDy8gIASKVStGzZEgkJCfwPtLCwEAkJCRg7dqymL5cQQgjRC4Y4QJs1a5auuyBK7QFadHQ0YmJiMGTIkFIffNKkSfjss8/g4uKCx48fY9asWTA2Noafnx8kEgkmT56MWbNmoVmzZvDw8MCGDRtw8+ZN7Nq1i9/H/fv3kZaWhvv376OgoIDPCK1bty4qV66MLl26oFGjRhgyZAgiIiIgl8sRFhaGoKAg/urW6NGjsXLlSkyZMgUjR47EkSNHsGPHDuzfv58/TkhICIYNG4ZWrVrho48+QmRkJLKysvjbr4QQQggh2qL2AC03N5efSLS0Hj58CD8/P7x48QK2trZo27Ytzpw5w1funThxIrKzsxEcHIy0tDQ0a9YM8fHxqFOnDr+PmTNnYsOGDfzz5s2bAwCOHj2KDh06wNjYGL///jvGjBkDLy8vVKpUCcOGDcPcuXP5bVxdXbF//34EBwcjKioKNWrUwJo1a+Dr68uvM2DAADx//hwzZ86EXC6Hh4cH4uLiSiQOEEIIIRWNoReqLSgowLJly7Bjxw7cv38fubm5Su1paWnl3ie1B2hffvklYmNjtZLVsG3btveuM23aNNE6YzExMYiJiRHdh4uLS4lbmP/WoUMHXLx4UXSdsWPH0i1NQggh/zmGeIvzXXPmzMGaNWvwzTffICwsDNOnT8e9e/ewd+9epcL25UntAVp2djZ++uknHD58GO7u7jA1NVVqX7qUCqC+z9roWbAQKFRbwKjNGRS8kLkvsUQAMSFT1c+C/XEFe6D81Th2H0nFkZev89KIAID8AmNmmyRP+DdBo3YbBJcTou8s6xwRXJ6vUAAo/ymGDNGWLVvw888/o3v37pg9ezb8/PxQp04duLu748yZMxg/np1AVVbUHqBdvnwZHh4eAKBUeR+AVhMGCCGEEFI+DP0KmlwuR9OmTQEAlStXRkZG0YwlPXr0qDh10I4ePVoW/SCEEEKIjhj6AK1GjRp48uQJatasiTp16uDQoUNo0aIF/v77b8FyWeWhVPczHj58iIcPH2qrL4QQQgjRAUOfSaBPnz5ISEgAAIwbNw4zZsxAvXr1MHToUIwcOVInfVL7ClphYSHmz5+PJUuWIDMzEwBQpUoVfPPNN5g+fTqMjPQjhoUQQgghRBULF76Nox4wYABcXFxw+vRp1KtXD5999plO+qT2AG369OlYu3YtFi5ciDZt2gAATp48idmzZyM7Oxvfffed1jv5XxMweo7WZhIoTzk5FfsvpPISvZydTDF6vHaTKbavn8RsM5MKV9bv7c9O5LGp+obZlnQkgNkmNiuAJpp11O7+CCHiOJRuwvMKfoezhI8//hgff/yxTvug9gBtw4YNWLNmDXr27Mkvc3d3xwcffICvv/6aBmiEEEJIBWPoMWj6SO37kWlpaXBzcyux3M3NTSeF3AghhBBC/mvUHqA1a9YMK1euLLF85cqVaNasmVY6RQghhJByxL29iqbJ4z93j1MPqH2LMyIiAt27d8fhw4f5ycQTExPx4MGD91brJ4QQQoj+KW0mZkXP4tRHag/Q2rdvj1u3bmHVqlW4efMmAKBv3774+uuv4eTkpPUOEv0xfpL6sw8YIm0nAmjK3JQxNYUIT98fy6AnhBBSMeTm5uLZs2coLFROsqpZs2a590XtARoAODk5UTIAIYQQ8h9h6Fmct2/fxsiRI3H69Gml5RzHQSKRoIA1F2MZUmmAdvnyZTRp0gRGRka4fPmy6Lru7u5a6RghhBBCyoehZ3EOHz4cJiYm+P333+Ho6KgXU1eqNEDz8PCAXC6HnZ0dPDw8IJFIwAn8NHQ1yiSEEEII0VRSUhLOnz8vWKVCV1TK4rx79y5sbW35f9+5cwd3794t8bhz506ZdpYQQggh2leaDE5Nrr6Fh4fjww8/RJUqVWBnZ4fevXsjOTlZaZ3s7GwEBQWhevXqqFy5Mvr164enT59q8VW/1ahRI/zzzz9lsm9NqXQFzcXFhf/3//73P7Ru3RomJsqb5ufn4/Tp00rrEt1a+F2o2ts8fZHHbDM3Y79dcnNFrpwyrhRbmrP352zP/rQHjtOPIHx9MGDEYmbbwR0TBZf/GhvC3CYtw5TZNmLM98y2+F/GCy7/pN9y5jak9E78/rXg8vx89t/e955UYraJ/YzJf1t5Z3EeP34cQUFB+PDDD5Gfn49vv/0WXbp0wfXr11GpUtF7NDg4GPv378fOnTshk8kwduxY9O3bF6dOndK4nyzff/89pkyZggULFqBp06YwNVX+LtTF7D9qJwl07NgRT548gZ2dndLyjIwMdOzYkW5xEkIIIRVMecegxcXFKT2PiYmBnZ0dzp8/D29vb2RkZGDt2rWIjY1Fp06dAADr169Hw4YNcebMGa1Pw+Tj4wMA6Ny5s9JyvU8SeFdxZ//txYsX/KiXEEIIIYZHoVAoPTczM4OZmdl7t8vIyAAAVKtWDQBw/vx55OXl8QMnoGjGopo1ayIxMVHrA7SjR49qdX/aoPIArW/fvgCKEgGGDx+udMILCgpw+fJltG7dWvs9JIQQQkiZ0laZDWdnZ6Xls2bNwuzZs0W3LSwsxMSJE9GmTRs0adIEACCXyyGVSmFtba20rr29PeRyeSl6Kqx9+/Za32dpqTxAk8lkAIquoFWpUgUWFhZ8m1Qqxccff4xRo0Zpv4eEEEIIKVPausX54MEDpXgtVa6eBQUF4erVqzh58qTmHdCC9PR0rF27Fjdu3AAANG7cGCNHjuTHP+VN5QHa+vXrAQC1atXC5MmTYWlpWWadItoxbbp+VP4PDZ0muFyszIyZtJDZNmumcPKDuZS9w9CwBeyD/Ud1+yJSq/s7smccs+1NjkY1r7Vq1TLh9xkANKunYLa17fGD4PLftwYzt8kVCcLvO2QJs43l+L4gZlv7nquYbc9fWgguF+uD2OtKEPkZmxgLfybF+leeNv00hdk2JDCiHHti2KysrNQKqB87dix+//13/Pnnn6hRowa/3MHBAbm5uUhPT1e6ivb06VM4ODhos8sAgHPnzsHX1xcWFhb46KOPAABLly7Fd999h0OHDqFFixZaP+b7qD1Z+tChQ/Ho0aMSy2/fvo179+5po0+EEEIIKUflXWaD4ziMHTsWe/bswZEjR+Dq6qrU3rJlS5iamiIhIYFflpycjPv37/PzgGtTcHAwevbsiXv37mH37t3YvXs37t69ix49emDixIlaP54q1B6gDR8+vMRUCABw9uxZDB8+XBt9IoQQQkg5Ki6zUZqHOoKCgrB582bExsaiSpUqkMvlkMvlePPmDYCisKqAgACEhITg6NGjOH/+PEaMGAEvLy+tJwgARVfQpk6dqlRCzMTEBFOmTMG5c+e0fjxVqD1Au3jxItq0aVNi+ccff4ykpCRt9IkQQggh/2GrV69GRkYGOnToAEdHR/6xfft2fp1ly5ahR48e6NevH7y9veHg4IDdu3eXSX+srKxw//79EssfPHiAKlWqlMkx30ftwBGJRIJXr16VWJ6RkUE10AghhJAKqLwnSxeaLvLfzM3NsWrVKqxaVfZxjgMGDEBAQAAWL17MV6Q4deoUJk+eDD8/vzI/vhAJp8pZesdnn30GCwsLbN26FcbGxgCKymwMGDAAWVlZOHjwYJl09L9AoVBAJpMhIyNDJ1WJ/ytmzxJOErASyVsxErlWbG7G/gjkFwhfti8U+Vtk/CT9SM7QxPb1k5htiixjZtuoscIV6E8fGMPcJlskscCYEZAOALl5wv24eY9dh7F+zdfMNtbPWCyJRSxJIE+krYqF8EwdWdnsc9FvqPpJB2IO7xae9QEAFFnsmSRcHIQTLS7drsbcZuTX7JkJdsSw32us30piM2f8F5XH74ziYyz9fiIszN+fccnyJjsHIVMjK+zvt9zcXEyePBnR0dHIz88HAJiammLMmDFYuHChStmo2qb2FbTvv/8e3t7eaNCgAdq1awcAOHHiBBQKBY4cOaL1DhJCCCGkbJX3TAL6RiqVIioqCuHh4UhNTQUA1KlTR6cVK9SOQWvUqBEuX76ML774As+ePcOrV68wdOhQ3Lx5ky8wRwghhBBS0VhaWqJp06Zo2rSpzsuJaVS8yMnJCQsWGF5dKUIIIeS/yBCvoPXt2xcxMTGwsrLiZ0tiKavkBDEaDdBOnDiBH3/8EXfu3MHOnTvxwQcfYNOmTXB1dUXbtm213UdCCCGElCFDHKDJZDJ+bnErKyvBecZ1Se0B2i+//IIhQ4bA398fFy5cQE5ODoCiLM4FCxbgwIEDWu8kIe+aPUf9IPyVy4QTCwDAzJT9zZKXz0gSEPkyilzEPtbEybpPINi6drJIK/sLihVMDwA/RApX8ec49hQpYtX9C0VqKhUWCreJJQIUMLYBgHtPzAWXBwUvZG4j5o+dE5htFub5gsu7fhGl0bFYftn4DbMtL1/KbDMxVv+3bF3nTLW3AQDryrnMtlevhZMV9mwOYW7z7CX7dX01TrOfJflvK54hCQBiYmJ01xEGtWPQ5s+fj+joaPz8888wNX37IWrTpg0uXLig1c4RQgghpOxxkJT6UZF16tQJ6enpJZYrFAp06tSp/DsEDa6gJScnw9vbu8RymUwm+OIIIYQQot8M8Rbnu44dO4bc3JJXdbOzs3HixAkd9EiDAZqDgwNSUlJQq1YtpeUnT55E7dq1tdUvQgghhJAydfnyZf7f169fh1wu558XFBQgLi4OH3zwgS66pv4AbdSoUZgwYQLWrVsHiUSCx48fIzExEZMmTcKMGTPKoo+EEEIIKUvlPZWAnvDw8IBEIoFEIhG8lWlhYYEVK1booGcaDNCmTZuGwsJCdO7cGa9fv4a3tzfMzMwwadIkjBs3riz6SEip5QkXcAcApOexQzGljAQCTiTbR9PvqRVLhJMLmtVnB9N7f6b+FCj/pLM/9iYmmvXehDHJQENXdt/FiN0ukZoKT+PwWqQav9hMEsbsCRI0Ym4mnAgAAHcfC892kPLDVOY2YtX4f14pvJ1tVfYJNDLS7Gfc8pOfNdqOpcvny5ltrGSANzla/mGRt0p5i7OiDtDu3r0LjuNQu3Zt/PXXX7C1teXbpFIp7Ozs+FmTyptGc3FOnz4dkydPRkpKCjIzM9GoUSNUrly5LPpHCCGEEFImXFxcAACFhezp5Vj27dun9jaffPIJLCwsVFpXozpoQNHIslGjRppuTgghhBA9YaB3OEu4fv067t+/XyJhoGfPniXW7d27t1r7lkgkuH37tsrx+ioN0NSptlu5cmU0btwYo0ePhkzGroFECCGEEP1g6Fmcd+7cQZ8+fXDlyhVIJBJw//+CiovXFhQIh1bI5XLY2dmpdIwqVaqo1SeV6qC9W21XJpOJPvLz8xEdHY0hQ4a8d7+zZ8/mg/OKH25ubkrrJCYmolOnTqhUqRKsrKzg7e2NN2/e8O1paWnw9/eHlZUVrK2tERAQgMxM5cKJly9fRrt27WBubg5nZ2dERESU6MvOnTvh5uYGc3NzNG3atETBXY7jMHPmTDg6OsLCwgI+Pj64ffu2KqePEEII0WvFA7TSPCqyCRMmwNXVFc+ePYOlpSWuXbuGP//8E61atcKxY8cEtxk2bJjKtysBYPDgwbCyslJ5fZWuoL1bbffdf7Ncv34dH374oUodaNy4MQ4fPvy2QyZvu5SYmIiuXbsiNDQUK1asgImJCS5dugSjdyJ+/f398eTJE8THxyMvLw8jRoxAYGAgYmNjARQVmevSpQt8fHwQHR2NK1euYOTIkbC2tkZgYCAA4PTp0/Dz80N4eDh69OiB2NhY9O7dGxcuXOAngI+IiMDy5cuxYcMGuLq6YsaMGfD19cX169dhbi5ciZzoj+Ap7Ar+S79nV/7PzhVOBvhmqmYzAqyOEq64DwBgJB6IJQKc+P1rZlu7Hj8wjsPuwpgJmlVcP31gjOBysS9tsdkCOLGZBBhtpibsGBKxNrGZJDTRvif75/VswyTB5SbG7P7t3sSeFcDGmpHEIvKSxGazEWtjzU7Qb+gS9kYaymYkA4jNdFDNip2cwbJtnfDPAwAGjlys9v5IxZWYmIgjR47AxsYGRkZGMDIyQtu2bREeHo7x48fj4sWLJbZRZTz0rtWrV6u1vsYxaADw8OFDAECNGjWUljdo0ACnT59WrQMmJnBwcBBsCw4Oxvjx4zFt2ttfag0aNOD/fePGDcTFxeHvv/9Gq1atAAArVqzAp59+isWLF8PJyQlbtmxBbm4u1q1bB6lUisaNGyMpKQlLly7lB2hRUVHo2rUrJk8umgJn3rx5iI+Px8qVKxEdHQ2O4xAZGYmwsDD06tULALBx40bY29tj7969GDhwoGD/c3Jy+KmwgKLBIiGEEKJvDP0WZ0FBAX8L0sbGBo8fP0aDBg3g4uKC5ORknfRJ7ameCgsLMXfuXMhkMri4uMDFxQXW1taYN28enwVhbGyMZs2aqbS/27dvw8nJCbVr14a/vz/u378PAHj27BnOnj0LOzs7tG7dGvb29mjfvj1OnjzJb5uYmAhra2t+cAYAPj4+MDIywtmzZ/l1vL29IZW+nafN19cXycnJePnyJb+Oj4+PUr98fX2RmJgIoCgNVy6XK60jk8ng6enJryMkPDxc6favs7OzSueEEEIIKU+cFh4VWZMmTXDp0iUAgKenJyIiInDq1CnMnTtXpaD+7OxsLFq0CJ9++ilatWqFFi1aKD00ofYVtOnTp2Pt2rVYuHAh2rRpA6BoFoHZs2cjOzsb3333ncr78vT0RExMDBo0aIAnT55gzpw5aNeuHa5evYo7d+4AKIpTW7x4MTw8PLBx40Z07twZV69eRb169QSD80xMTFCtWjW+GrBcLoerq6vSOvb29nxb1apVIZfL+WXvrvPuPt7dTmgdIaGhoQgJeVvPR6FQ0CCNEEII0TNhYWHIysoCAMydOxc9evRAu3btUL16dWzfvv292wcEBODQoUP4/PPP8dFHH/Fx+6Wh9gBtw4YNWLNmjVLKqbu7Oz744AN8/fXXag3QunXrprQPT09PuLi4YMeOHWjYsCEA4KuvvsKIESMAAM2bN0dCQgLWrVuH8HDNYoDKk5mZGczMzHTdDUIIIUSUod/i9PX15f9dt25d3Lx5E2lpaahatapKg63ff/8dBw4c4C9caYPaA7S0tLQSmZYA4ObmhrS0tFJ1xtraGvXr10dKSgo/5cK/a601bNiQvw3q4OCAZ8+eKbXn5+cjLS2Nj2tzcHDA06dPldYpfv6+dd5tL17m6OiotI6Hh4fGr5foB7HvFSPG55JV9f99zKTsNqtKwkHOx34dK7JHdpTCqmWshAT2l41Y0oGRRD++gQsLhfvPWg4AyffVL6T9a6xwNXsAyM9nH0ssaN5CKpyqn1cgkhQhUj+T9YvDWCSYXqzvYr+HWL+Ad21gJzFoysRE/asPuXnsbbavF04GoESAtwx9gLZ582b06dMHlSq9ne2jWrVqKm//wQcfqF1G433UjkFr1qwZVq5cWWL5ypUrVY47Y8nMzERqaiocHR1Rq1YtODk5lQjOu3XrFl/518vLC+np6Th//jzffuTIERQWFsLT05Nf588//0TeO3P9xMfHo0GDBqhatSq/TkJCgtJx4uPj4eXlBQBwdXWFg4OD0joKhQJnz57l1yGEEEJIxRQcHAx7e3sMGjQIBw4cYNY9Y1myZAmmTp2K//3vf1rrk9pX0CIiItC9e3ccPnyYH5wkJibiwYMHJWqHvc+kSZPw2WefwcXFBY8fP8asWbNgbGwMPz8/SCQSTJ48GbNmzUKzZs3g4eGBDRs24ObNm9i1axeAoqtpXbt2xahRoxAdHY28vDyMHTsWAwcOhJOTEwBg0KBBmDNnDgICAjB16lRcvXoVUVFRWLZsGd+PCRMmoH379liyZAm6d++Obdu24dy5c/jpp58AFP2VOnHiRMyfPx/16tXjy2w4OTmpXUmYEEII0TeGfgXtyZMniIuLw9atW/HFF1/A0tIS/fv3h7+/P1q3bv3e7Vu1aoXs7GzUrl0blpaWMDU1VWrX5A6j2gO09u3b49atW1i1ahVu3rwJoGimga+//pofFKnq4cOH8PPzw4sXL2Bra4u2bdvizJkz/GSlEydORHZ2NoKDg5GWloZmzZohPj4ederU4fexZcsWjB07Fp07d4aRkRH69euH5cvfTsIrk8lw6NAhBAUFoWXLlrCxscHMmTP5EhsA0Lp1a8TGxiIsLAzffvst6tWrh7179/I10ABgypQpyMrKQmBgINLT09G2bVvExcVRDTRCCCEVnqFP9WRiYoIePXqgR48eeP36Nfbs2YPY2Fh07NgRNWrUQGpqquj2fn5+ePToERYsWAB7e/vyTxLIy8tD165dER0drVYyAMu2bdveu860adOU6qD9W7Vq1fiitCzu7u44ceKE6Dr9+/dH//79me0SiQRz587F3LlzxTtMCCGEkArL0tISvr6+ePnyJf73v//hxo0b793m9OnTSExMLHWo17vUGqCZmpri8uXLWjs4IeUlchE7qN9EuGg5APZl+wLRwG12m9SUvaGTzRvB5R16lYz5LCaWQBAULDwrADt5QJxY5X9N/lYUmy1AIpKQwDq/WdnsrzOxKvOVzIXbcvPVDtEFAOyIYVenB0TebAxiyRllUcWfZc9m4aSJApEEByORUygW1M+aMeDzYZq93q1rJ2u0nSEx9FucAPgrZ1u2bEFCQgKcnZ3h5+fHh1WJcXNzU5qGUhvU/gYaPHgw1q5dq9VOEEIIIUR3OE5S6kdFNnDgQNjZ2SE4OBi1a9fGsWPHkJKSgnnz5glWrvi3hQsX4ptvvsGxY8fw4sULKBQKpYcm1I5By8/Px7p163D48GG0bNlSKSUVAJYuXapRRwghhBCiG4Z+Bc3Y2Bg7duyAr68vjI3Vv9LdtWtXAEDnzp2VlnMcB4lEonZWKKDBAO3q1av8tAW3bt1SatNGUBwhhBBCSHnasmUL/+/s7Gy1EwCPHj2q7S6pP0Ari04QQgghRHcMPYuzsLAQ3333HaKjo/H06VPcunULtWvXxowZM1CrVi0EBASIbt++fXut90nCcZpfmHzw4AEA0PySKlIoFJDJZMjIyICVlZWuu0NUELVYOLlgwiTNphpj7Q8AKlsKJxDUdspibvPsJfuvPLuq2YLLxS50GxmJBeer/1UhFpciVvk/v4AdHsuqrP9PBntaNakJOznD1FT4dYkFv4spEHldEsavMbGfiZlIYglrxoBuX0Syd6hlv2xkzyQg9n7qM5jCYd6nPH5nFB9jemgIzM01n5owOzsH34UvrbC/3+bOnYsNGzZg7ty5GDVqFK5evYratWtj+/btiIyMRGJiYoltLl++jCZNmsBILBvmHdeuXUODBg1gYqLatTG1kwTy8/MxY8YMyGQy1KpVC7Vq1YJMJkNYWJhStX5CCCGEkIpg48aN+Omnn+Dv768Ug9asWTO+5uu/NW/eHC9evFD5GF5eXvxUlapQ+xbnuHHjsHv3bkRERCjNJDB79my8ePECq1evVneXhBBCCNEhQ08SePToEerWrVtieWFhIfPiE8dxmDFjBiwtLVU6Rm5urlp9UnuAFhsbi23btqFbt278Mnd3d75eCA3QCCGEkIqFA4dSRDyBq+BRaI0aNcKJEyf4ub6L7dq1C82bNxfcxtvbu8R84WK8vLxgYWGh8vpqD9DMzMxQq1atEstdXV0hlUrV3R0hhBBCiE7NnDkTw4YNw6NHj1BYWIjdu3cjOTkZGzduxO+//y64zbFjx8q0T2oP0MaOHYt58+Zh/fr1MDMrCijMycnBd999h7Fj2VXNCfm3vVuEK5MDgKkxOzC6+8DIMuiNMEtz4X4c3DGRuQ0riB0A6tdkt2W9Ea69k53L/pjaWOewd6gB8T+g1Q+aF0sEEGsT6wdru8oW7NkCxLBmSBALcBfru1jlf1YyQL5IQkIPv2XMNpY/fwtitnl/tkrt/YkRm81g9yZ2AoFYW98h5TdDAili6FmcvXr1wm+//Ya5c+eiUqVKmDlzJlq0aIHffvsNn3zyiU76pPYA7eLFi0hISECNGjX4OacuXbqE3NxcdO7cGX379uXX3b17t/Z6SgghhJCyUcoYtAo/QgPQrl07xMfH67obPLUHaNbW1ujXr5/SMiqzQQghhBCiPWoP0NavX18W/SCEEEKIjugqi3PVqlVYtGgR5HI5mjVrhhUrVuCjjz7SvCNqqFq1qsozIKWlpZVxb0pSe4BGiLp+jRWONTMRifERK3B6aNd4tbfJyWOX/KsuEy7oCgB1PhD+iIgVbc3NY8/jJjVlz8dmLlU/hionl30s1veOWB/EvqvEvoBZ24nGkmlYxJZVCJbTIEYOYPdRrA+anidWXNsXw7Ubc/UsTb1pasqKWCzZjphJ5dgT8l46CELbvn07QkJCEB0dDU9PT0RGRsLX1xfJycmws7MrRWdUExkZWebHKA0aoBFCCCEGThdJAkuXLsWoUaMwYsQIAEB0dDT279+PdevWYdq0aaXojWqGDRtWqu337dun8ro9e/ZUe/80QCOEEEKIVigUCqXnZmZmfMWHd+Xm5uL8+fMIDX07/Z2RkRF8fHwEp1UqD6mpqVi/fj1SU1MRFRUFOzs7HDx4EDVr1kTjxo1LrN+7d2+l5xKJRKmW3Lu3TwsK2HcuWNSe6okQQggh/y3FMWileQBFSYMymYx/hIcLz1v8zz//oKCgAPb29krL7e3tIZfLy/rllnD8+HE0bdoUZ8+exe7du5GZmQmgqErFrFmzBLcpLCzkH4cOHYKHhwcOHjyI9PR0pKen48CBA2jRogXi4uI06pNKV9CqVauGW7duwcbGBiNHjkRUVBSqVKmi0QEJIYQQol+0lSTw4MEDpcnSha6e6aNp06Zh/vz5CAkJURrfdOrUCStXrnzv9hMnTkR0dDTatm3LL/P19YWlpSUCAwNx48YNtfuk0gAtNzcXCoUCNjY22LBhA77//nsaoBGV9Rq0VHD571uDmduIFQktKBS+8CsRiYKQmrCrx4oVgmXFgoslJIgR244VNG8iUrRX7Dy9YbwuU5FzIRZJIv6ahbcT20bTBAIWsZ+/2P6MGPcRxIolixWPFSvAqun7Rpt+2cjuXyajWDIADPsqQqv9+GL4Yq3uj+gHKysrpQEai42NDYyNjfH06VOl5U+fPoWDg0NZdY/pypUriI2NLbHczs4O//zzz3u3T01NhbW1dYnlMpkM9+7d06hPKg3QvLy80Lt3b7Rs2RIcx2H8+PHM+aTWrVunUUcIIYQQohvlnSQglUrRsmVLJCQk8LFchYWFSEhI0MmsRNbW1njy5AlcXV2Vll+8eBEffPDBe7f/8MMPERISgk2bNvG3bZ8+fYrJkydrXDZEpQHa5s2bsWzZMqSmpkIikSAjIwPZ2ezSBIQQQgipODiulJOla7BtSEgIhg0bhlatWuGjjz5CZGQksrKy+KzO8jRw4EBMnToVO3fuhEQiQWFhIU6dOoVJkyZh6NCh791+3bp16NOnD2rWrMkX73/w4AHq1auHvXv3atQnlQZo9vb2WLhwIYCiSdE3bdqE6tWra3RAQgghhJABAwbg+fPnmDlzJuRyOTw8PBAXF1cicaA8LFiwAEFBQXB2dkZBQQEaNWqEgoICDBo0CGFhYe/dvm7durh8+TLi4+Nx8+ZNAEDDhg3h4+OjcjHcf1O7zMbdu3c1OhAhhBBC9JOuZhIYO3asTm5p/ptUKsXPP/+MmTNn4sqVK8jMzETz5s1Rr149lfchkUjQpUsXdOnSRSt90qgO2vHjx7F48WI+K6FRo0aYPHky2rVrp5VOEcMgVo3fSKSNJTefXTXGSOQPGLHtzKXCtWs0rSSfppAy20xMhDesWiWHuU2Xz5ezD8ZwdC/7y1Cser54ggMjcUPk5yh2noyN2AH6BQXsQHYWsfcTK4GgQMOZCVgzHQCAMSOpQyxwXxNi78/8AnajhZlYAgn5L9PVAE3fODs7qzy/+PLlyxEYGAhzc3MsXy7+XTx+vPAMOGLUHqBt3rwZI0aMQN++ffkDnjp1Cp07d0ZMTAwGDRqkdicIIYQQQiqSZcuWwd/fH+bm5li2jJ3ZLZFIymeA9t133yEiIgLBwW9LJIwfPx5Lly7FvHnzaIBGCCGEVDi6mOypYns35Ksswr/Unkngzp07+Oyzz0os79mzJ8WnEUIIIRWQtmYSIKXPiC2m9gDN2dkZCQkJJZYfPnxY5fu2hBBCCNEfxYOK0jwM3caNG9G0aVNYWFjAwsIC7u7u2LRpk8b7U/sW5zfffIPx48cjKSkJrVu3BlAUgxYTE4OoqCiNO0IMTz5jRoAi7GBlTTKWxSrui+UjiAXNs7x6Y8pss6v6htn28pXwlCjte65Suw8AsPnnyYLLK1mwExWevWS31XJg950VaK/pd7bYeS/QcjV+1vupUCReftcGdlC/scjburx+h4l9RgaMYFfwF5vdg7x1YPtEZtunAyLLrR9Eu06cOIEff/wRqamp2LVrFz744ANs2rQJrq6uSlM4CVm6dClmzJiBsWPHok2bNgCAkydPYvTo0fjnn3+UwsJUpfYAbcyYMXBwcMCSJUuwY8cOAEW1PrZv345evXqp3QFCCCGE6JahZ3H+8ssvGDJkCPz9/XHx4kXk5BRlz2dkZGDBggU4cOCA6PYrVqzA6tWrlYra9uzZE40bN8bs2bPLZ4AGAH369EGfPn002ZQQQgghesbQUwTmz5+P6OhoDB06FNu2beOXt2nTBvPnz3/v9k+ePOHvKr6rdevWePLkiUZ9UjsGjRBCCCHkvyQ5ORne3t4llstkMqSnp793+7p16/J3Fd+1fft2tYrdvkujK2iEEEII+e/QxVyc+sTBwQEpKSmoVauW0vKTJ0+idu3a791+zpw5GDBgAP78808+Bu3UqVNISEgQHLipggZoRGfEgrC7D4pktu3dEiK4XKxavFj1dLFZBlh7lIhc0LeyzGO2vcpiB+H39l/K7ghD/C/s4ocf2Aqf4I69VzK3ObybvT+xnxenQTKFxj8TxqkX+/2g4VR4TEZaTgTQdv/6Dlmi0XY9/NjFNslb/8lEAAO/xzlq1ChMmDAB69atg0QiwePHj5GYmIhJkyZhxowZ792+X79+OHv2LJYtW8ZPjt6wYUP89ddfaN68uUZ9ogEaIYQQQgzatGnTUFhYiM6dO+P169fw9vaGmZkZJk2ahHHjxqm0j5YtW2Lz5s1a65PGMWi5ublITk5Gfn6+1jpDCCGEkPLHaeFRkUkkEkyfPh1paWm4evUqzpw5g+fPn2PevHkq7yM1NRVhYWEYNGgQnj17BgA4ePAgrl27plGf1B6gvX79GgEBAbC0tETjxo1x//59AMC4ceOwcOFCjTpBCCGEEN0x9EK1GRkZSEtLg1QqRaNGjfDRRx+hcuXKSEtLg0KheO/2x48fR9OmTXH27Fn88ssvyMzMBABcunQJs2bN0qhPag/QQkNDcenSJRw7dgzm5ub8ch8fH2zfvl2tfc2ePRsSiUTp4ebmxrd36NChRPvo0aOV9pGQkIDWrVujSpUqcHBwwNSpU0tc1bt8+TLatWsHc3NzODs7IyIiokRfdu7cCTc3N5ibm6Np06Ylap5wHIeZM2fC0dERFhYW8PHxwe3bt9V6vYQQQgjRPwMHDlQqr1Fsx44dGDhw4Hu3nzZtGubPn4/4+HhIpW9jjTt16oQzZ85o1Ce1Y9D27t2L7du34+OPP4bkncjWxo0bIzU1Ve0ONG7cGIcPH37bIRPlLo0aNQpz587ln1taWvL/vnTpEj799FNMnz4dGzduxKNHjzB69GgUFBRg8eKiatkKhQJdunSBj48PoqOjceXKFYwcORLW1tYIDAwEAJw+fRp+fn4IDw9Hjx49EBsbi969e+PChQto0qQJACAiIgLLly/Hhg0b4OrqihkzZsDX1xfXr19XGqiSkn6NFQ7q50QqwrMSAQB2MgAHzSKtJRJ29Dvrj0JW5XxAPIC8UOSPzHU/TBVcPvLr75nb5OWzD5ZfINx2cMdE5jaForM7sBUwkgRMjNkvWCwRQGy2AFZAvViSCKt/AHvWArHAfbGZKTSZfUIi0nexz0lFtnWt8EwXAOAXsEjt/Z07FMhsa9XlJ7X3Z2gMvVDt2bNnsXRpyUStDh06YPr06e/d/sqVK4iNjS2x3M7ODv/8849GfVL72/j58+ews7MrsTwrK0tpwKYqExMTODg48A8bGxuldktLS6V2Kysrvm379u1wd3fHzJkzUbduXbRv3x4RERFYtWoVXr16BQDYsmULcnNzsW7dOjRu3BgDBw7E+PHjlX4QUVFR6Nq1KyZPnoyGDRti3rx5aNGiBVauLMp24zgOkZGRCAsLQ69eveDu7o6NGzfi8ePHfLYGIYQQUlEZ+mTpOTk5gjH1eXl5ePOGPc1dMWtra8GCtBcvXsQHH3ygUZ/UHqC1atUK+/fv558XD8rWrFkDLy8vtTtw+/ZtODk5oXbt2vD39+dj2opt2bIFNjY2aNKkCUJDQ/H69Wu+LScnp8TVKwsLC2RnZ+P8+fMAgMTERHh7eytdcvT19UVycjJevnzJr+Pj46O0H19fXyQmJgIA7t69C7lcrrSOTCaDp6cnv46QnJwcKBQKpQchhBCif7hS/VfR0wQ++ugj/PRTySut0dHRaNmy5Xu3HzhwIKZOnQq5XA6JRILCwkKcOnUKkyZNUpr+SR1q3+JcsGABunXrhuvXryM/Px9RUVG4fv06Tp8+jePHj6u1L09PT8TExKBBgwZ48uQJ5syZg3bt2uHq1auoUqUKBg0aBBcXFzg5OeHy5cuYOnUqkpOTsXv3bgBFg6jIyEhs3boVX3zxBeRyOX87tHgkK5fL4erqqnRce3t7vq1q1aqQy+X8snfXkcvl/Hrvbie0jpDw8HDMmTNHrXNCCCGEkPI1f/58+Pj44NKlS+jcuTOAohj3v//+G4cOHXrv9gsWLEBQUBCcnZ1RUFCARo0aoaCgAIMGDUJYWJhGfVL7Clrbtm2RlJSE/Px8NG3aFIcOHYKdnR0SExNVGmW+q1u3bujfvz/c3d3h6+uLAwcOID09na+6GxgYCF9fXzRt2hT+/v7YuHEj9uzZw8e6denSBYsWLcLo0aNhZmaG+vXr49NPPy16YWKBQOUkNDQUGRkZ/OPBgwe67hIhhBBSgqHf4mzTpg0SExPh7OyMHTt24LfffkPdunX5JMP3kUql+Pnnn5Gamorff/8dmzdvxs2bN7Fp0yYYGxtr1CeNCtXWqVMHP//8s0YHFGNtbY369esjJSVFsN3T0xMAkJKSgjp16gAAQkJCEBwcjCdPnqBq1aq4d+8eQkND+akZHBwc8PTpU6X9FD93cHAQXefd9uJljo6OSut4eHgwX4+ZmRnMzMxUeu1l4cgednG9NznCb5juAyM1OpZYUD+LeGA0e7s8RvC7WAiksUiwer5IYDyren6fweyq/+tXCwf7A0A1GXuWAVYPf98azNxGLAiflSQgRiyJQWrCTqZgn0ORwH0Ng9+Z7w2RN4BYoD3rvSH2HtQkEUBTms4KoO9e57Dfn2sZCTNi73dzqRWz7U7MJMHlYrNjiB3r82H/zZ9JBb9LWWoeHh7YsmVLqfZRs2ZN1KxZUyv9UXuAZmxsjCdPnpRIFHjx4gXs7OxQUFCgcWcyMzORmpqKIUOGCLYnJSUBgNIgCSiKg3NycgIAbN26Fc7OzmjRogUAwMvLC9OnT0deXh5MTU0BAPHx8WjQoAGqVq3Kr5OQkICJEyfy+4yPj+dj6lxdXeHg4ICEhAR+QKZQKHD27FmMGTNG49dLCCGEEP2SnZ2N3NxcpWXvJigKCQkRvkghkUhgbm6OunXrolevXqhWrZrK/VB7gMYqRpeTk6MUiK+KSZMm4bPPPoOLiwseP36MWbNmwdjYGH5+fkhNTUVsbCw+/fRTVK9eHZcvX0ZwcDC8vb3h7u7O72PRokXo2rUrjIyMsHv3bixcuBA7duzgLykOGjQIc+bMQUBAAKZOnYqrV68iKioKy5a9nXNuwoQJaN++PZYsWYLu3btj27ZtOHfuHB8wKJFIMHHiRMyfPx/16tXjy2w4OTmhd+/eap5BQgghRL8Y+FSceP36NaZMmYIdO3bgxYsXJdrfd/Hp4sWLuHDhAgoKCtCgQQMAwK1bt2BsbAw3Nzf88MMP+Oabb3Dy5Ek0atRIpT6pPEBbvnw5gKLBypo1a1C5cmWljv/5559KRWZV8fDhQ/j5+eHFixewtbVF27ZtcebMGdja2iI7OxuHDx9GZGQksrKy4OzsjH79+pUItjt48CC+++475OTkoFmzZvj111/RrVs3vl0mk+HQoUMICgpCy5YtYWNjg5kzZ/I10ACgdevWiI2NRVhYGL799lvUq1cPe/fu5WugAcCUKVOQlZWFwMBApKeno23btoiLi6MaaIQQQiq80s4GUNFnEpg8eTKOHj2K1atXY8iQIVi1ahUePXqEH3/8UaVZkoqvjq1fv56/2paRkYEvv/wSbdu2xahRozBo0CAEBwfjjz/+UKlPKg/Qiq84cRyH6OhopaA3qVSKWrVqITo6WtXdAYBg1d5izs7OKmWFHjly5L3ruLu748SJE6Lr9O/fH/3792e2SyQSzJ07V6loLiGEEEIqvt9++w0bN25Ehw4dMGLECLRr1w5169aFi4sLtmzZAn9/f9HtFy1ahPj4eKVboTKZDLNnz0aXLl0wYcIEzJw5E126dFG5TyoP0O7evQsA6NixI3bv3s3HbxH91anPCq3ub/t64UBbADAxZgdN9xsqHFC7Z7P6iQUAu4q7WJKApn/ciSUDaOJNNjswOoAxY4BYAkZ+ITs7yMxUOAJaLDCa49SfmQAAJIwbHKyEjvf1Q5MkbE1/xqztyrOCv6bHYs3S0WuQdt+3ALB/20TB5ZomFokF4RszPuPO9q8FlwPA4+eWzDZZZXZyDktOnu4rAZQnQ59JIC0tjU8utLKyQlpaGoCiyhWqxJpnZGTg2bNnJW5fPn/+nK+Bam1tXSK2TYza78CjR4/S4IwQQgj5DzH0Mhu1a9fmL0S5ubnx5b5+++03WFtbv3f7Xr16YeTIkdizZw8ePnyIhw8fYs+ePQgICOBj1f/66y/Ur19f5T5pVGbj4cOH2LdvH+7fv19iNCg0lxUhhBBCiL4aMWIELl26hPbt22PatGn47LPPsHLlSuTl5ak0rvnxxx8RHByMgQMH8lNGmZiYYNiwYXyImJubG9asWaNyn9QeoCUkJKBnz56oXbs2bt68iSZNmuDevXvgOI4vbUEIIYSQisPQsziDg9/Wm/Tx8cHNmzdx/vx51K1bV6lyBEvlypXx888/Y9myZbhz5w6Aoqty7yZUitVNFaL2Lc7Q0FBMmjQJV65cgbm5OX755Rc8ePAA7du3Fw2yJ4QQQoh+Ks7iLM2joqlWrRr++ecfAMDIkSPx6tUrvs3FxQV9+/ZVaXD2rsqVK8Pd3R3u7u5KgzNNqH0F7caNG9i6dWvRxiYmePPmDSpXroy5c+eiV69eVLi1nK1Zxa5aX+eDLGYbK+D7k37LmdsMGLFY9Y69Q9NkABZWMoDY94NYAkHma3agvVgVf5YRY5a9fyUBrGSA3v7aDRtgBZYD4ucwXySQXez8soglAmhSxV/TmSk06bvYsUxFgt9z81mzYGj2y62gQP3Or46axmxrWCuT2dZ94Eq1jyVm2FcRzLZfNn4juLx9z1Va7UPcjgnMNrH3p9gsLazkrJ9Xsr+rG7gIn/es16oHlJeWISYJ5ObmQqFQwMbGBhs2bMD333+PKlWq6LpbPLUHaJUqVeLjzhwdHZGamorGjRsDAD8SJYQQQgjRZ15eXujduzdatmwJjuMwfvx4WFhYCK67bt26cu6dBgO0jz/+GCdPnkTDhg3x6aef4ptvvsGVK1ewe/dufPzxx2XRR0IIIYQQrdq8eTOWLVuG1NRUAEWlMrKzs3Xcq7fUHqAtXboUmZlFl2PnzJmDzMxMbN++HfXq1aMMTkIIIaQCMsRbnPb29vwsAa6urti0aROqV6+u4169pfYArbiQG1B0u1Pd2QMIIYQQQvRFXl4eateujbS0tIo9QCuWm5uLZ8+eofBf5cBr1qxZ6k4R1ZlL2eXY7z2pxGwbMUa4ar2Y3ZuEA3cBdnV/QCyom30szfan/jYAUKUSexLcQsYuew7SLBFATHklA4j9patpML0mfz1reizWz1ksqPs98xwLEj9P7A6qX7Ne/PWKfe40Oe821vnMtjxGEgPATmKpLmPfEkp5wA64FvsOsq/2htmmTWLnvZoV+3W16/GD2seysWa/M6Smwm/QPBMN3rgaMsQraMVMTU1x+fJlXXejBLXLbNy6dQvt2rWDhYUFXFxc4OrqCldXV9SqVQuurq5l0UdCCCGElCFDLLPxrsGDB2Pt2rW67oYSta+gjRgxAiYmJvj999/h6OgIiSY56oQQQggheiI/Px/r1q3D4cOH0bJlS1SqpHwHShcx9moP0JKSknD+/Hm4ubmVRX8IIYQQUs70dSaBe/fuYd68eThy5AjkcjmcnJwwePBgTJ8+HVKplF/v8uXLCAoKwt9//w1bW1uMGzcOU6ZMUfk4V69e5WdDunXrllKbri5EqT1Aa9SoEdU7I4QQQv5D9DUG7ebNmygsLMSPP/6IunXr4urVqxg1ahSysrKweHFR8XSFQoEuXbrAx8cH0dHRuHLlCkaOHAlra2sEBgaqdJyjR4+WzQsoBQmn5o3jI0eOICwsDAsWLEDTpk1hamqq1G5lZaXVDv6XKBQKyGQy/Lo5EJUspSXaUx4KB/V/NW5hWXeNt339JGabiUiFdE2C+sUYixyL9Y4VC9wW03fIEo22Ky+s4GxAs0B2sZ+Vpl+ymvyBKXYssYD//Hzhg4m9Z8Ro8v7U9jnUNAFDk1k1xPQZrP5tnJ0b2N8Z/YexZx859utYZhsrWUGRZSq4HAAKRH6OxiI/L00UinzXZOcI992+GjvpoMvnwjO4FP/OyMjIKLPfrcXHGDR0NKRSM433k5ubg9iN0WXa12KLFi3C6tWr+TkvV69ejenTp0Mul/NX1aZNm4a9e/fi5s2bZdqXsqT2FTQfHx8AQOfOnZWWcxwHiUSCAk3SpQghhBCiM9q6gqZQKJSWm5mZwcxM84GfkIyMDFSrVo1/npiYCG9vb6Vbnr6+vvj+++/x8uVLVK1a9b377Nixo+itzCNHjpSu0xpQe4Cmj5cBCSGEEKI5bcWgOTs7Ky2fNWsWZs+eXYo9K0tJScGKFSv425sAIJfLS1SRsLe359tUGaB5eHgoPc/Ly0NSUhKuXr2KYcOGlb7jGlB7gNa+ffuy6AchhBBCdEVLl9AePHigdIuTdfVs2rRp+P578XqcN27cUEpIfPToEbp27Yr+/ftj1KhRmvdVwLJlwrUtZ8+ezc+eVN5UGqBdvnwZTZo0gZGR0XuLubm7u2ulY4QQQgipWKysrFSKQfvmm28wfPhw0XXenbno8ePH6NixI1q3bo2ffvpJaT0HBwc8ffpUaVnxcwcHBxV7Lmzw4MH46KOPlK7YlReVBmgeHh6Qy+Wws7ODh4cHJBKJYFE6ikFTzctXUuTkl/yropoVu8I3i6bV/d9kGwsul5qyt9E001iTQGZtV9XftYF9nvRdQQH7xJuasGeSYM2CUJ71JDVNBBCjaTIAux/q70/Tz4Ims2CInSfW+RXrn1hSxMaf2GUJWLOWfDFcs19c6ZklE6WKsZIExIL9C9kfBY0SiMTOu9ixpKbCjWIJDvqgvLM4bW1tYWtrq9K6jx49QseOHdGyZUusX78eRv/64Xh5eWH69OnIy8vjExfj4+PRoEEDlW5viklMTIS5uXmp9qEplQZod+/e5U/k3bt3y7RDhBBCCClf+loH7dGjR+jQoQNcXFywePFiPH/+nG8rvjo2aNAgzJkzBwEBAZg6dSquXr2KqKgo5m1LIX379lV6znEcnjx5gnPnzmHGjBnaeTFqUmmA5uLiIvhvQgghhJCyEh8fj5SUFKSkpKBGjRpKbcV38mQyGQ4dOoSgoCC0bNkSNjY2mDlzpso10Ir38S4jIyM0aNAAc+fORZcuXUr/QjSg0gBt3759Ku+wZ8+eGneGEEIIITpQylucZXUJbfjw4e+NVQOK4t9PnDih8XHWr1+v8bZlRaUBWu/evZWe/zsG7d3aIRSDRgghhFQs+jqTQHl58OABJBIJf5Xur7/+QmxsLBo1aqTWlThtUmmAVvhOROThw4cxdepULFiwAF5eXgCKguiKZxcg7ycBB4nAnxschANZxar7iwX1iwWXm5gIb1eeleTLc3ozsYDfPZvZlfo1qayubWJB7KxgarHtxM6F2HtGk9kdxH7GYscSC5pnEQsgNxLpR55IP1g0T5gR7qOmMwmwAv41nemgkjn7D+zsXA2zOhhE32uM/ov1feDI8s+yE7JtnfD3taXIuSW6N2jQIAQGBmLIkCGQy+Xw8fFBkyZNsGXLFsjlcsycObPc+6R2HbSJEyciOjoabdu25Zf5+vrC0tISgYGBuHHjhlY7SAghhJCyZehX0K5evYqPPvoIALBjxw40bdoUp06dwqFDhzB69OiKMUBLTU2FtbV1ieUymQz37t3TQpcIIYQQUp6Ksjg1H2VV8PEZ8vLy+KK6hw8f5uPp3dzc8OTJE530Se1r1h9++CFCQkKUisI9ffoUkydP5kefhBBCCCEVRePGjREdHY0TJ04gPj4eXbt2BVBUILd69eo66ZPaA7S1a9fiyZMnqFmzJurWrYu6deuiZs2aePToEdauXVsWfSSEEEJIGSq+xVmaR0X2/fff48cff0SHDh3g5+eHZs2aASiqYqGri09q3+KsV68eLl++jPj4eNy8eRMA0LBhQ/j4+IjOBE/eMjXhYCoQ3J+bJ3z+xIKfxQJtxYLBJYxPEytRAYBgYkMxserkrA/u58OWMLfRNrEAd/tqr5ltv2wUnoGg31Dt9509KwT73BaKVEhnxdkLzQLyto3ZhPx89RMIxPan6SwDrO3EzkWeBn0X+zrLzdMsYL7/MPUD2cVmC2ER+zyKEfuZsBKSdm5gJzGJH4vdR9b3Gmt2jLLw1yF25t5HXX5itmmSrLB/20TB5a9f56i9L00Zegxahw4d8M8//0ChUCjNPhAYGAhLS0ud9EmtAVpeXh4sLCyQlJSELl266Kx4GyGEEEK0R19nEihPxsbGJaaGqlWrlm46AzVvcZqamqJmzZpU64wQQgghpAypfZ1++vTp+Pbbb5GWllYW/SGEEEKILnCleBCtUzsGbeXKlUhJSYGTkxNcXFxQqVIlpfYLFy5orXP/VXn5EuQJxJsZMYKGROOMRD4ZYsU+TRg/+XdqEqu1P7GYF23Hmh37dazg8g69VjK36TWIXXD211h2oVpNYs3EYobEin2amjCKjoqcd6kp+wcmFp+oCU2KqYptIxYXqEkMldj7szzDY01NRD5EDL9vDWa2cRz7PSP23aAJsc8/s3ishnGrlSzYd2I+HRDJ7kg5EYsz07buAyMFlysUCiAgulz6YOgxaPpI7QHav6d9IoQQQgipqPLy8tC1a1dER0ejXr16uu4OT+0B2qxZs8qiH4QQQgjREUNOEjA1NcXly5d13Y0SNJ5c7fz589i8eTM2b96MixcvarNPhBBCCClHhl4HbfDgwXpXy1XtAdqzZ8/QqVMnfPjhhxg/fjzGjx+Pli1bonPnznj+/Lla+5o9ezYkEonSw83NjW/v0KFDifbRo0cr7ePvv/9G586dYW1tjapVq8LX1xeXLl1SWufy5cto164dzM3N4ezsjIiIiBJ92blzJ9zc3GBubo6mTZviwIEDSu0cx2HmzJlwdHSEhYUFfHx8cPv2bbVeLyGEEEL0T35+PlavXo1WrVrhq6++QkhIiNJDF9S+xTlu3Di8evUK165dQ8OGDQEA169fx7BhwzB+/Hhs3bpVrf01btwYhw8fftuhf0Wvjxo1CnPnzuWfv1swLjMzE127dkXPnj3xww8/ID8/H7NmzYKvry8ePHgAU1NTKBQKdOnSBT4+PoiOjsaVK1cwcuRIWFtbIzCwqBDh6dOn4efnh/DwcPTo0QOxsbHo3bs3Lly4gCZNmgAAIiIisHz5cmzYsAGurq6YMWMGfH19cf36dZibm6v1mjlIBANrtf0XiCZB4mLB1GLFQ8uicCtLmsJMcPmezewPkXXlXJE9SkvZI2UFIgHu1pXzmG25+cInWOx9IRbUzeqH2DaixY1FgvBZxAvVahbgzuqHpkkRrISEvkPY72lWogogfp4O7pgouDwjy5S5TRXLfGYbq2Cupok55+NHMdv+J7cSXJ4vUnXJ2JjdlpWt9q8fUoYMPUng6tWraNGiBQDg1q1bSm26KsKv9ickLi4Ohw8f5gdnANCoUSOsWrVKo8K1JiYmcHBwYLZbWloy22/evIm0tDTMnTsXzs7OAIpi5Nzd3fG///0PdevWxZYtW5Cbm4t169ZBKpWicePGSEpKwtKlS/kBWlRUFLp27YrJkycDAObNm4f4+HisXLkS0dHR4DgOkZGRCAsLQ69evQAAGzduhL29Pfbu3YuBAweq/boJIYQQfcFxnOgsI6psX5EdPXpU110oQe1bnIWFhTA1LfnXnqmpKQrF/jRnuH37NpycnFC7dm34+/vj/v37Su1btmyBjY0NmjRpgtDQULx+/XZangYNGqB69epYu3YtcnNz8ebNG6xduxYNGzbkq/8mJibC29sbUunbqyS+vr5ITk7Gy5cv+XV8fHyUjuvr64vExEQAwN27dyGXy5XWkclk8PT05NcRkpOTA4VCofQghBBCiH5KSUnBH3/8gTdv3gDQ7cBT7QFap06dMGHCBDx+/Jhf9ujRIwQHB6Nz585q7cvT0xMxMTGIi4vD6tWrcffuXbRr1w6vXr0CAAwaNAibN2/G0aNHERoaik2bNmHw4MH89lWqVMGxY8ewefNmWFhYoHLlyoiLi8PBgwf5W6VyuRz29vZKxy1+LpfLRdd5t/3d7YTWERIeHg6ZTMY/iq/yEUIIIfqkNDVq/wu1al+8eIHOnTujfv36+PTTT/HkyRMAQEBAAL75Rv35cLVB7QHaypUroVAoUKtWLdSpUwd16tSBq6srFAoFVqxYoda+unXrhv79+8Pd3R2+vr44cOAA0tPTsWPHDgBFk5T6+vqiadOm8Pf3x8aNG7Fnzx6kpqYCAN68eYOAgAC0adMGZ86cwalTp9CkSRN0796dH/3qUmhoKDIyMvjHgwcPdN0lQgghpARDz+IMDg6Gqakp7t+/rxTrPmDAAMTFxemkT2rHoDk7O+PChQs4fPgwbt68CQBo2LBhiVuEmrC2tkb9+vWRkpIi2O7p6Qmg6BJknTp1EBsbi3v37iExMRFG/x/dHBsbi6pVq+LXX3/FwIED4eDggKdPnyrtp/h5cWwba51324uXOTo6Kq3j4eHBfD1mZmYwMxMOaBfCeoOLvfGNjDSr4p3PCKg2NWFv09ufXY1f2w7vHs9sq2IpvNzCjB1MbSJS3T2PEZyvqZcK9seq/7DFau9v+/pJzDYTkWr8rGPt2sD+a1A8gUDkvcaaBUMkYcKIUZn+fVj7FNufWIwva39iM0z0GsSeteLHFdOYba6OrwWX13TIYm7TrscPzLZfNmr3L/uWn/zMbLvLeN+InVvW9wwgPgsGKX+GniRw6NAh/PHHH6hRo4bS8nr16uF///ufTvqk0W8miUSCTz75BOPGjcO4ceO0MjgDirIyU1NTlQZB70pKSgIAvv3169cwMjJSyrAofl4cD+fl5YU///wTeXlvs+fi4+PRoEEDftZ6Ly8vJCQkKB0rPj4eXl5eAABXV1c4ODgoraNQKHD27Fl+HUIIIYRUTFlZWUpXzoqlpaWpdaFFmzQaoB0/fhyfffYZ6tati7p166Jnz544ceKE2vuZNGkSjh8/jnv37uH06dPo06cPjI2N4efnh9TUVMybNw/nz5/HvXv3sG/fPgwdOhTe3t5wd3cHAHzyySd4+fIlgoKCcOPGDVy7dg0jRoyAiYkJOnbsCKAojk0qlSIgIADXrl3D9u3bERUVpVTXZMKECYiLi8OSJUtw8+ZNzJ49G+fOncPYsUWp9BKJBBMnTsT8+fOxb98+XLlyBUOHDoWTkxNNfUUIIaTCM/QYtHbt2mHjxo388+ILPREREfx4orypfYtz8+bNGDFiBPr27Yvx44tuQ508eRKdO3dGTEwMBg0apPK+Hj58CD8/P7x48QK2trZo27Ytzpw5A1tbW2RnZ+Pw4cOIjIxEVlYWnJ2d0a9fP4SFhfHbu7m54bfffsOcOXPg5eUFIyMjNG/eHHFxcfxVNplMhkOHDiEoKAgtW7aEjY0NZs6cyZfYAIDWrVsjNjYWYWFh+Pbbb1GvXj3s3buXr4EGAFOmTEFWVhYCAwORnp6Otm3bIi4uTu0aaIQQQoi+MfRbnBEREejcuTPOnTuH3NxcTJkyBdeuXUNaWhpOnTqlkz6pPUD77rvvEBERgeDgYH7Z+PHjsXTpUsybN0+tAdq2bduYbc7Ozjh+/Ph79/HJJ5/gk08+EV3H3d39vVf4+vfvj/79+zPbJRIJ5s6dq1Q0lxBCCCEVX5MmTXDr1i2sXLkSVapUQWZmJvr27YugoCBm2FVZU3uAdufOHXz22Wcllvfs2RPffvutVjr1X6fuXyrGIsHPJiJB/WIB2k7VhLNcHz5jROAD2LmBHayuSfC7GLGq8KaMgP+2IsHU2nZq/xhmm5GRcMX199m6drLgcjMp+2esyV+tYlXmxYLOxY7FChQXC9wXm0nAWCT5QdsJCVlvhMvd5+Sx93cmbjSz7atx0cw2bWPN4LF+9VTmNtm57NdVyYIduG9VSfgc5uWLJY8wm5CTy46w2bJG+LMgtr9BAYvYjeS9DP0K2v379+Hs7Izp06cLttWsWbPc+6R2DJqzs3OJgHoAOHz4MNX5IoQQQiogQ49Bc3V1FZxP/MWLF3B1ddVBjzS4gvbNN99g/PjxSEpKQuvWrQEAp06dQkxMDKKiorTeQUIIIYSQssRxnOCcm5mZmTqLNVd7gDZmzBg4ODhgyZIlfEHZhg0bYvv27fw8lYQQQgipQEpbbLaCXkIrruggkUgwY8YMpVIbBQUFOHv2rGi907Kk9gANAPr06YM+ffpouy+EEEII0QFDjUG7ePEigKIraFeuXFGat1sqlaJZs2aYNIkdf12W1B6g/f333ygsLOSr+hc7e/YsjI2N0apVK611ztAw3+AigbGaVvf/87cgweVVq+QJLgcAq0o5zLY1q9hByZbmwoHHYkG9vv3Zt8t3xAh/WPZsZld+z84RDgQHAD+Rflw4/KXg8pSH1ZjbSE01+6ZiBb+LVWP/Yrh2kzPEk07Y24kF/LOwXi8gniTCSiAQ259Y36tUEp6BwlKkDzfvsRNBrqxkfxYcq+cKLu/ht4y5jSZGjPme2bbxpynMNiORc8gK6hdLYhIjdDvpbT+El4t9VgnRxNGjRwEAI0aMQFRUFKysNEvyKgtqJwkEBQUJzin56NEjBAUJ/9InhBBCiP4y9CSB9evX69XgDNDgCtr169fRokWLEsubN2+O69eva6VThBBCCCk/hnqL813nzp3Djh07cP/+feTmKl/t3r17d7n3R+0raGZmZiUmFgeAJ0+ewMREo5A2QgghhOhQ8QCtNI+KbNu2bWjdujVu3LiBPXv2IC8vD9euXcORI0cgk8l00ie1B2hdunRBaGgoMjIy+GXp6en49ttv31vRnxBCCCFE3yxYsADLli3Db7/9BqlUiqioKNy8eRNffPGFTorUAhrc4ly8eDG8vb3h4uKC5s2bAwCSkpJgb2+PTZs2ab2D/0XmpgUwlxaUWP6GEcheIFIhXcy+2GBmW36B+nVdun2xmtnWRu29ac6EESTeZzA7YWLdD+zAbTF5BcI/E3MpO+p8wAh24L5YpX5n+9eCy9t0Z593bes1iH0OxZIwWEH4YpXfxbJfxCr/iwX8s7fR7FgsssrCiQUAkJvH/rs3R6StvAwNjGC2sSr4a0ps1gqxmUmysnV/ngyNod/iTE1NRffu3QEUZW9mZWVBIpEgODgYnTp1wpw5c8q9T2oP0D744ANcvnwZW7ZswaVLl2BhYYERI0bAz88PpqamZdFHQgghhJSh0gb6V/DxGapWrYpXr14BKBrnXL16FU2bNkV6ejpevxb+47msaRQ0VqlSJQQGBmq7L4QQQggh5c7b2xvx8fFo2rQp+vfvjwkTJuDIkSOIj49H586dddInuo5MCCGEGLiKkCSQk5MDDw8PSCQSJCUlKbVdvnwZ7dq1g7m5OZydnRERwb6VL2TlypUYOHAgAGD69OkICQnB06dP0a9fP6xdu1ZbL0EtlHZJCCGEGLiKEIM2ZcoUODk54dKlS0rLFQoFunTpAh8fH0RHR+PKlSsYOXIkrK2tVb7bV63a2+LjRkZGmDZtmlb7rgkaoOlAfqER8gtKXrxkBVSLB1qz9Ryk3erkYuJ/Gc9s+6Tfcq0eq+8QduAxi0f9Fxody9P3R8HlT7awA+bFZDOqsQPAk38sBZeLBeeLJUZoQiyJQazyuybvUU2C88WIJQJo8stD7DUJfX6LiVXWtzArmRxU3n5cwf7F06R2JrPt8T+VtNqP/sO0OwsG+W87ePAgDh06hF9++QUHDx5UatuyZQtyc3Oxbt06SKVSNG7cGElJSVi6dKnKA7ShQ4eiY8eO8Pb2Rp06dcriJaiNbnESQgghBk5bMwkoFAqlR04Oe4pAVT19+hSjRo3Cpk2blCYzL5aYmAhvb2+leTR9fX2RnJyMly9fqnQMqVSK8PBw1KtXD87Ozhg8eDDWrFmD27dvl7r/mlJ7gDZs2DD8+eefZdEXQgghhOiAtmLQnJ2dIZPJ+Ed4eHgp+8Vh+PDhGD16NHOub7lcDnt7e6Vlxc/lcrlKx1mzZg1u3bqFBw8eICIiApUrV8aSJUvg5uaGGjVqlOo1aErtW5wZGRnw8fGBi4sLRowYgWHDhuGDDz4oi74RQgghpAJ58OCB0pyWZmZmgutNmzYN33//vei+bty4gUOHDuHVq1cIDQ3Vaj9ZqlatiurVq6Nq1aqwtraGiYkJbG1ty+XY/6b2AG3v3r14/vw5Nm3ahA0bNmDWrFnw8fFBQEAAevXqRbXQCCGEkApGW0kCVlZWKk06/s0332D48OGi69SuXRtHjhxBYmJiiYFeq1at4O/vjw0bNsDBwaHEFJTFzx0cHFTq/7fffotjx47h4sWLaNiwIdq3b49p06bB29sbVatWVWkf2qZRkoCtrS1CQkIQEhKCCxcuYP369RgyZAgqV66MwYMH4+uvv0a9evW03df/jPwCCfILSkYgG0mEPx2aJgnou92bxALS2d8UmgTGt/BZw2yLiZ7CbKtsIRzULRYwL8bMlF0GXx9+zsaMWRqA9315C3debBuxoH5N+iG2jZgCgc8i8L7ZDMRmJmC35YkkF2jTtnXsKv1fjWMH5yceHM1sy3oj3PdKFuz39K4N7M84JzKTBCUQlL/yLlRra2ur0pWp5cuXY/78+fzzx48fw9fXF9u3b4enpycAwMvLC9OnT0deXh5/kSg+Ph4NGjRQeXC1cOFC2NraYtasWejbty/q16+v5ivSvlJ9Wzx58gTx8fGIj4+HsbExPv30U1y5cgWNGjXCsmXll0FICCGEEM3pax20mjVrokmTJvyjeOBUp04dPjZs0KBBkEqlCAgIwLVr17B9+3ZERUUhJET1bPuLFy9i+vTp+Ouvv9CmTRt88MEHGDRoEH766SfcunWrTF7b+6h9BS0vLw/79u3D+vXrcejQIbi7u2PixIkYNGgQf1lzz549GDlyJIKD2XNBEkIIIYSUlkwmw6FDhxAUFISWLVvCxsYGM2fOVGvGo2bNmqFZs2YYP76oZNSlS5ewbNkyBAUFobCwEAUF5V8iR+0BmqOjIwoLC+Hn54e//voLHh4eJdbp2LEjrK2ttdA9QgghhJQ1DqWMQdNaT8TVqlULnEBH3d3dceLECY33y3EcLl68iGPHjuHYsWM4efIkFAoF3N3d0b59+9J0WWNqD9CWLVuG/v37w9zcnLmOtbU17t69W6qOEUIIIaR8GPpk6dWqVUNmZiaaNWuG9u3bY9SoUWjXrp1OLzapPUAbMmRIWfTDoBQUSAQDk41MhN/ihRw7mFYsCNdcyg7eZVW0/3yY+lX6AfHZAvYyqu5zIq+rhj27ojmrErrYX38e9dOZbcZG7IyjAkYwuFi1eE2x+l+eyQOaVuPXJHBf7HUVst+6zD6KHcvUmL3D3v6Rgst/38oO0RD6C74Y6z0DADmMz92OGHZQv9h7rd9Q4c9rTp5m4cVe3aLZbYzl5w6xbyNdSmEHaFexZN8y2vzzZMHlb3LYr2vUWPGSDYSI2bx5M9q1a6dSBmp5oameCCGEEANXEebiLEvdu3fXdRdKoAEaIYQQYuA4Dig04AGaPqK5OAkhhBBC9AxdQSOEEEIMnKHf4tRHNEDTASvLPFhalrx4+SbHWHB9iUh+jFigtVigcHkGnvf2F678v309OzD63mN2oOZX4xYKLl8dJZw8AIgHvw8JjGC2sezcwO67WJtIkXkm1vkrC2KB9poE7pcF1ns3P5/dB1YiAADs3zZRcPnrHPbX4xfD2ZXuxd7XJhrOdsDCSsCxqyryw9IysSMFfK1Z4L7YTAikbBh6Fqc+oluchBBCCCF6hq6gEUIIIQaO4ySipY9U2Z5oFw3QCCGEEANHMWj6hwZohBBCiIGjGDT9QwM0HcjOM4ZRbsmEAA4aXCIW+bPFSCTCsO8QzWYM0MSvscKBzBIJu4N5IgHfLB/Y5jDb5C8smW2sQGuAXfndlDHrAyBeSV4Mqyq8tu2LFauQz+67JokAYtsYiVTIF9tOkwSX3ZvYM26w3oemJpoF2msyy4S2Z1V4nS2ccASIJ7GIzQc9cKRwYsRHXX5ib6Qhh+rZjD6s1PqxCNFXNEAjhBBCDFwhB0hKcRmsNEVuiTAaoBFCCCEGjmLQ9A+V2SCEEEII0TM6HaDNnj0bEolE6eHm5sa3d+jQoUT76NGj+faYmJgS7cWPZ8+e8esdO3YMLVq0gJmZGerWrYuYmJgSfVm1ahVq1aoFc3NzeHp64q+//lJqz87ORlBQEKpXr47KlSujX79+ePr0qfZPCiGEEFLOOC08iHZJOE53FyZnz56NXbt24fDhw/wyExMT2NjYACgaoNWvXx9z587l2y0tLWFlVVRl/s2bN8jIyFDa5/Dhw5GdnY1jx44BAO7evYsmTZpg9OjR+PLLL5GQkICJEydi//798PX1BQBs374dQ4cORXR0NDw9PREZGYmdO3ciOTkZdnZ2AIAxY8Zg//79iImJgUwmw9ixY2FkZIRTp06p/HoVCgVkMhkyMjL41/AuViCzWNC5kUjQQKEGdWnE3g1igczpr9hByWZS4Z0O1aCCv6Zioqcw2ypZqB8MLnbeNf1EsZI6xILEM9+wz7ulufCGYtXsJRoGobDeG2LvmYICdqOm70NNaPLz0jSh45eNwp9xsf3t2sBOcMjLF37TiP0cWcH+RP+873eGNo/h1vYrGJtINd5PQX4ubp78sUz7amh0HoNmYmICBwcHZrulpSWz3cLCAhYWFvzz58+f48iRI1i7di2/LDo6Gq6urliypOgLsGHDhjh58iSWLVvGD9CWLl2KUaNGYcSIEfw2+/fvx7p16zBt2jRkZGRg7dq1iI2NRadOnQAA69evR8OGDXHmzBl8/PHHgv3LyclBTs7bzEKFQqHKKSGEEEKIgdN5DNrt27fh5OSE2rVrw9/fH/fv31dq37JlC2xsbNCkSROEhobi9evXzH1t3LgRlpaW+Pzzz/lliYmJ8PHxUVrP19cXiYmJAIDc3FycP39eaR0jIyP4+Pjw65w/fx55eXlK67i5uaFmzZr8OkLCw8Mhk8n4h7OzswpnhBBCCClfxUkCpXkQ7dLpFTRPT0/ExMSgQYMGePLkCebMmYN27drh6tWrqFKlCgYNGgQXFxc4OTnh8uXLmDp1KpKTk7F7927B/a1duxaDBg1Suqoml8thb2+vtJ69vT0UCgXevHmDly9foqCgQHCdmzdv8vuQSqWwtrYusY5cLme+vtDQUISEvK2xpVAoaJBGCCFE7xTFkZViqiftdYX8P50O0Lp168b/293dHZ6ennBxccGOHTsQEBCAwMBAvr1p06ZwdHRE586dkZqaijp16ijtKzExETdu3MCmTZvKrf/vY2ZmBjMzM113gxBCCCEVjM5j0N5lbW2N+vXrIyUlRbDd09MTAJCSklJigLZmzRp4eHigZcuWSssdHBxKZFs+ffoUVlZWsLCwgLGxMYyNjQXXKY59c3BwQG5uLtLT05Wuor27jjbkM4KmxYKinWyzmG335ZWZbWKzDLCIXcKWVWaXIM9mVOMX8+dvQcy2a3eqCC63FumDOSNRARCvnm5uJhxoLxbgLvbzEjuHrJ+/WGV6q0rszrOSC8T6IDaTAKt/AHtmBbEEF4nI39yanEOxbcSC5lmvWdMZIcSwEne2rWNX93+To/7X9Igx36u9DdGOH1dME1z+1biFzG3Wr54quPzNG/bsKNpGhWr1j85j0N6VmZmJ1NRUODo6CrYnJSUBQIn2zMxM/qrbv3l5eSEhIUFpWXx8PLy8vAAAUqkULVu2VFqnsLAQCQkJ/DotW7aEqamp0jrJycm4f/8+vw4hhBBSUVEMmv7R6RW0SZMm4bPPPoOLiwseP36MWbNmwdjYGH5+fkhNTUVsbCw+/fRTVK9eHZcvX0ZwcDC8vb3h7u6utJ/t27cjPz8fgwcPLnGM0aNHY+XKlZgyZQpGjhyJI0eOYMeOHdi/fz+/TkhICIYNG4ZWrVrho48+QmRkJLKysvisTplMhoCAAISEhKBatWqwsrLCuHHj4OXlxczgJIQQQioKjivdVTAaoGmfTgdoDx8+hJ+fH168eAFbW1u0bdsWZ86cga2tLbKzs3H48GF+sOTs7Ix+/fohLCysxH7Wrl2Lvn37lgjiBwBXV1fs378fwcHBiIqKQo0aNbBmzRq+xAYADBgwAM+fP8fMmTMhl8vh4eGBuLg4pcSBZcuWwcjICP369UNOTg58fX3xww8/lMl5IYQQQohh0+kAbdu2bcw2Z2dnHD9+XKX9nD59WrS9Q4cOuHjxoug6Y8eOxdixY5nt5ubmWLVqFVatWqVSnwghhJCKorSzAdAFNO3TqyQBQ8cK6har/O7VLZrZdnftZGbbgBGLBJfHimwjXoGe2aTRjAH3nlRittlVzRNcLhqQLtI/sUr9rErtYkxN2DsU2x+rj2Kvy0zKPlYhYzuxGSYqW+Qz27JEZi1g3d4QS3Aoz9kCxJI6NJnBQVOsGSiMRL6JB46kgH998xMjEQBg/4w3/8z+bpUw3vCazuyhicJSjtAoSUD79CpJgBBCCCGE0BU0QgghxOBxnES0zI4q2xPtogEaIYQQYuBKe0e/DCICDB4N0HRg95bpsLQoOcMAq9hnv6FLmPsSixkbFCAcZwYAiQdHCy43MWYXtxUjFk+0I0a4CKdY4VMp41wAQG6e8J15sXgNsZgmsdg6FmORbaQiMWj5+eyOsKZZYcW0vM/nw9jvG03s2RzCbGPFu+kLscLMrPehplcEdm34htkm9r5h2bKG/Rn3/5L9GS8v5+NHMdvEPpMtfNaURXfKhZFIbGU1K+E4TtHvO1PG/jga9hgyGqARQgghBo6SBPQPDdAIIYQQA0cDNP1DWZyEEEIIIXqGrqARQgghBo6uoOkfGqDpQF//72BlZaWVfYklAohhFbh9uEE4oB8QD1YXK37KKvjJSooQ2wYATIyFG1lB9gAgEfnmEUvC2MpIwjCTsDtY1Sqb2Zadyy7AmytcfxemIp/SXoOWshvLEStoWtNAe02K2GqaJCJhJDiIFRwWI3osRltvf81+jqwA/Zaf/Mzc5vi+IGab2Gtu/elqtY/1X/VlELt48LZ1wt+hYokqrPd7ec5vWQgJIPIdqtr2RJtogEYIIYQYuEKgdFfQtNURwqMYNEIIIYQQPUMDNEIIIcTAcVxRHJmmj7K+Hbt//354enrCwsICVatWRe/evZXa79+/j+7du8PS0hJ2dnaYPHky8vPZcwtXBHSLkxBCCDFwBShNBFqp7o6+1y+//IJRo0ZhwYIF6NSpE/Lz83H16lW+vaCgAN27d4eDgwNOnz6NJ0+eYOjQoTA1NcWCBQvKsGdlS8Jx5RmGaNgUCgVkMhkyMjK0liSgbZt+msJsM5OyowzE3kWs4FhWsD/Ani1AbH9iffhi+GJ2o4gD2ycKLn+dbczcppJFAbOt2xeRavdBrDK9WHJGZQvhvx5fZEiZ2wwJjGC2ic0koEkygFhQv9j+WD9nsQB3I5HuFWjQd2ORvueLzKrAmnEhN4+9jSazIGiaPETKzk8rpjHbqlgKf2e8fpODL8etKNPfGcW/l6xajIHEuOQMN6riCnKguLAaDx48UOqrmZkZzMw0329+fj5q1aqFOXPmICAgQHCdgwcPokePHnj8+DHs7e0BANHR0Zg6dSqeP38OqZT9nafP6BYnIYQQYuAKuNI/AMDZ2RkymYx/hIeHl6pfFy5cwKNHj2BkZITmzZvD0dER3bp1U7qClpiYiKZNm/KDMwDw9fWFQqHAtWvXSnV8XaJbnIQQQoiBy+cADaf9BfD2yrbQFbTSuHPnDgBg9uzZWLp0KWrVqoUlS5agQ4cOuHXrFqpVqwa5XK40OAPAP5fL5aU6vi7RFTRCCCGEaIWVlZXSgzVAmzZtGiQSiejj5s2bKPz/opjTp09Hv3790LJlS6xfvx4SiQQ7d+4sz5dW7ugKGiGEEGLgCiCBpBRpAmKFwoV88803GD58uOg6tWvXxpMnTwAAjRo14pebmZmhdu3auH//PgDAwcEBf/31l9K2T58+5dsqKhqgESUmxuxr3MaMavGAeLA6K6i7gBHgDIhXY+8/TDjg/5eN7GB6TbFmBfh0gPBMDKXxaywrCJ99MsSSH35kBCVXrcJOPT+0azyzrbDQlNnG+hmLBbizAuYB8Z8/a9YCsUSA3Hz1bxaIzmYgMguG2HZ5+cKdtDRnJ5aIMZdqth0pf4HjFjLb1v4wVXD5m5zyu8mlrVucqrK1tYWtre1712vZsiXMzMyQnJyMtm3bAgDy8vJw7949uLi4AAC8vLzw3Xff4dmzZ7CzswMAxMfHw8rKSmlgV9HQAI0QQgghesnKygqjR4/GrFmz4OzsDBcXFyxaVJSl3L9/fwBAly5d0KhRIwwZMgQRERGQy+UICwtDUFBQqWPgdIkGaIQQQoihK22x2TIs2LVo0SKYmJhgyJAhePPmDTw9PXHkyBFUrVoVAGBsbIzff/8dY8aMgZeXFypVqoRhw4Zh7ty5ZdepckADNEIIIcTgcSjdKKvsRmimpqZYvHgxFi9mh3S4uLjgwIEDZdYHXaABGiGEEGLo9Hd8ZrBoJoFyVBFmEji8mx0knqZgV2MWSy5gVTsXSzroN3QJs60iO7V/DLMtJ1f476VOfVYwtxGbZUBqKlxZv0AkOL/P4KXMNjGsfohldon9/MVmGWAll4glFohhzUAg1nexb02x5AcLM+GgfrH9iSYdFAgHkZuInFtWksX7jsXSfWCk+huVgdi1k5lt1pXzBJeLzWaiyGInxXw+rHy+n8rjd0bxMdB0DFCKmQRQkANcWa3Xv98qGrqCRgghhBg8uoSmb2iARgghhBg6jgM49hVFlbYnWkUzCRBCCCGE6Bm6gkYIIYQYOq6UdTboCprWUZJAOSqLgM8ta9iBsWJB0zm5whdPHarnsLfJY19wFTtWrsh2LGIB5Kwgd7FtWIkKgHg1fm079utYZhsreNvYiH3boU331cy23ZuEA/fFgsRNRYKmNQkG37uFNTuC+LGyc42ZbaxvLBOR6v6aEPtm1HQWDE2SX1hV5gHAlPGa69dUMLf556UFsy3zDfu8sz53rk6ZzG1af8p+f4rZETNJcLmmn9X4X4STn8S+m8Te7z8xZukAxGcMYIleLry/N9k5CJkaWT5JAo2/BIzZiWDvVZALXFtDSQJaRLc4CSGEEEL0DN3iJIQQQgwdV1jKJIFSbEsE0QCNEEIIMXQ0QNM7dIuTEEIIIUTP0BW0Ck7TCuR2VYWTAbIZyQOAeJV5sYr2Eg0KGIr13YhRZT43T7PA7fLUoddKZhurEnolC+Hq8wDwayw7CN9cKvwXrViyB6syPQD8vjWY2cZ635ho+A0j9vM3NRVuLBT5A14sgYQ1Y4DYjACW5uyfyacDItkd0UBlkZ8/y8ddozU61rZ1wsH5AHu2kMqW7MQiVnA+IF6pv6ZDFrON5Y+dE5htrGQKsRlQTh9gz/phaqJ+EHxM9BRmm7NdruDy16/Z51b7Cv//UZrtiTbRAI0QQggxdHSLU+/QAI0QQggxdFQHTe9QDBohhBBCiJ7R6QBt9uzZkEgkSg83Nze+vUOHDiXaR48eXWI/MTExcHd3h7m5Oezs7BAUFKTUfvnyZbRr1w7m5uZwdnZGREREiX3s3LkTbm5uMDc3R9OmTXHgwAGldo7jMHPmTDg6OsLCwgI+Pj64ffu2ls4EIYQQokuFWngQbdL5Lc7GjRvj8OHD/HOTf0UVjxo1CnPnzuWfW1paKrUvXboUS5YswaJFi+Dp6YmsrCzcu3ePb1coFOjSpQt8fHwQHR2NK1euYOTIkbC2tkZgYCAA4PTp0/Dz80N4eDh69OiB2NhY9O7dGxcuXECTJk0AABEREVi+fDk2bNgAV1dXzJgxA76+vrh+/TrMzc21fVpUJhZALhbUr22swG0AyM8XDrbW9Io4q6L5wJHlNyNAWahh91pw+ctXZsxtxCra9xoUKbj8l43shA5TE/aXrFhyAYtYcgbr5wgAFmbs93V+oXA/8kUSHPJF4uxZCQRiMy5oOxFAzIAR5fe+FvsMndovHDSf+tCauQ1rxhJAfHaPzNfCFe0vHQ1gbpOeWZXZ9jpbeIYEx+rZzG3EkkRyRBKSDu0STowwM2V/jrOyhX8Vv85RP0FEYxSDpnd0PkAzMTGBg4MDs93S0pLZ/vLlS4SFheG3335D586d+eXu7u78v7ds2YLc3FysW7cOUqkUjRs3RlJSEpYuXcoP0KKiotC1a1dMnlyURTdv3jzEx8dj5cqViI6OBsdxiIyMRFhYGHr16gUA2LhxI+zt7bF3714MHDhQsH85OTnIyXmbhaNQsKdfIYQQQggppvMYtNu3b8PJyQm1a9eGv78/7t+/r9S+ZcsW2NjYoEmTJggNDcXr12+vMsTHx6OwsBCPHj1Cw4YNUaNGDXzxxRd48OABv05iYiK8vb0hlb79i8zX1xfJycl4+fIlv46Pj4/ScX19fZGYmAgAuHv3LuRyudI6MpkMnp6e/DpCwsPDIZPJ+Iezs7MGZ4gQQggpYxz39iqaRg9KEtA2nQ7QPD09ERMTg7i4OKxevRp3795Fu3bt8OrVKwDAoEGDsHnzZhw9ehShoaHYtGkTBg8ezG9/584dFBYWYsGCBYiMjMSuXbuQlpaGTz75BLm5RXVl5HI57O3tlY5b/Fwul4uu8277u9sJrSMkNDQUGRkZ/OPdgSMhhBCiPygGTd/o9BZnt27d+H+7u7vD09MTLi4u2LFjBwICAvhbkADQtGlTODo6onPnzkhNTUWdOnVQWFiIvLw8LF++HF26dAEAbN26FQ4ODjh69Ch8fX3L/TW9y8zMDGZm7LgDQgghhBAhOo9Be5e1tTXq16+PlJQUwXZPT08AQEpKCurUqQNHR0cAQKNGjfh1bG1tYWNjw98qdXBwwNOnT5X2U/y8OLaNtc677cXLio9Z/NzDw0Oj16ot5ZkIsHsTO7hcLKCWFSjOquAOiF8t15dZATQhVo2/kBMOjDYxYv9lykoEAIAzcSUzngHgRYY1cxsb6zxmm1hQPyvQnpUgAojPMpAvcqxcDZIVpKbsc8ia6UKsyrwhYgXui83SwKrgD4gnJLAC7e89kTG3EZsFpaqV8Pv6dQ77TVjIsd+D1WX5zDbWDAnGIu8n1iwYYrNjaB3VQdM7Oo9Be1dmZiZSU1OVBkHvSkpKAgC+vU2bNgCA5ORkfp20tDT8888/cHFxAQB4eXnhzz//RF7e2w9ofHw8GjRogKpVq/LrJCQkKB0rPj4eXl5eAABXV1c4ODgoraNQKHD27Fl+HUIIIaTCKlX8WSkzQIkgnQ7QJk2ahOPHj+PevXs4ffo0+vTpA2NjY/j5+SE1NRXz5s3D+fPnce/ePezbtw9Dhw6Ft7c3n6VZv3599OrVCxMmTMDp06dx9epVDBs2DG5ubujYsSOAojg2qVSKgIAAXLt2Ddu3b0dUVBRCQt7OYThhwgTExcVhyZIluHnzJmbPno1z585h7NixAACJRIKJEydi/vz52LdvH65cuYKhQ4fCyckJvXv3LvfzRgghhJD/Np3e4nz48CH8/Pzw4sUL2Nraom3btjhz5gxsbW2RnZ2Nw4cPIzIyEllZWXB2dka/fv0QFhamtI+NGzciODgY3bt3h5GREdq3b4+4uDiYmhZdZpbJZDh06BCCgoLQsmVL2NjYYObMmUrxba1bt0ZsbCzCwsLw7bffol69eti7dy9fAw0ApkyZgqysLAQGBiI9PR1t27ZFXFycTmugEUIIIVpBddD0jk4HaNu2bWO2OTs74/jx4+/dh5WVFdauXYu1a9cy13F3d8eJEydE99O/f3/079+f2S6RSDB37lylormEEELIfwP3/4/SbE+0Sa+SBIh2bVs3idnGCtDduYG9DUSC+sWwYkdZwdnv3R+jH2IV8vsNXaLRsbRNImG/Zo4TjjjoPnCZRseSv7AUXF5dxk4EyBMJ6heraL93S4jgcrGZDsQCoMWSTkyMhTcUO5ZYG+t9XVCo/V8429cLf77E4qstzdnV5FmfhapVcgSXA+Ln4tVr4QB3ADCSCL8/zUQSMPLyNYui6fL5csHlv8YKv88AoIol+zyx3k9is0WIzZwhGg/PyGISS25ifR8rFAoEjF0pcjBtKm0cGV1B0za9ShIghBBCCCF0BY0QQgghFIOmd2iARgghhBg6qoOmd2iAVo64/38Dl9ek6a/fsONQWH0Q20bbtB2DZiQS36UvE9W/fs0+v/mFwhEHmvaddSyxgrP5IvFJYv3Q5Fhi8T9iMWis7cRiq4w0COYQixfU+GfC+HyJ/m4rVD8GTWqcy9xG7Dy9fs2+CmLE2MzEhL3N62x23zU5h2KfH7H3GovYd4bYj0Qstk6TQtqsc1G8nCuPwU8hu/huuWxPSpBw5fKTJ0BRWRGaMJ0QQog6Hjx4gBo1apTJvrOzs+Hq6io6r7SqHBwccPfuXSo/pSU0QCtHhYWFePz4MapUqQJJRZ6vSIRCoYCzszMePHgAKysrXXdHp+hcKKPz8Radi7foXLz173PBcRxevXoFJycnGGlyGVhF2dnZyM1lX3VVlVQqpcGZFtEtznJkZGRUZn8F6RsrKyuD/7ItRudCGZ2Pt+hcvEXn4q13z4VMxp5/VFvMzc1pYKWHqMwGIYQQQoieoQEaIYQQQoieoQEa0SozMzPMmjULZmZmuu6KztG5UEbn4y06F2/RuXiLzgV5FyUJEEIIIYToGbqCRgghhBCiZ2iARgghhBCiZ2iARgghhBCiZ2iARgghhBCiZ2iAZmDCw8Px4YcfokqVKrCzs0Pv3r2RnJzMt9+7dw8SiUTwsXPnTgDApUuX4OfnB2dnZ1hYWKBhw4aIiooqcaxjx46hRYsWMDMzQ926dRETE1NinVWrVqFWrVowNzeHp6cn/vrrL6X27OxsBAUFoXr16qhcuTL69euHp0+f6s25ePHiBbp27QonJyeYmZnB2dkZY8eOLTG3niGci3e9ePECNWrUgEQiQXp6eoU6F4D2zodQ+7Zt2yrU+dDmeyMmJgbu7u4wNzeHnZ0dgoKClNovX76Mdu3awdzcHM7OzoiIiCjRn507d8LNzQ3m5uZo2rQpDhw4oNTOcRxmzpwJR0dHWFhYwMfHB7dv39abcxETE8Nc59mzZ/y+9P19QcoBRwyKr68vt379eu7q1atcUlIS9+mnn3I1a9bkMjMzOY7juPz8fO7JkydKjzlz5nCVK1fmXr16xXEcx61du5YbP348d+zYMS41NZXbtGkTZ2Fhwa1YsYI/zp07dzhLS0suJCSEu379OrdixQrO2NiYi4uL49fZtm0bJ5VKuXXr1nHXrl3jRo0axVlbW3NPnz7l1xk9ejTn7OzMJSQkcOfOneM+/vhjrnXr1npzLtLS0rgffviB+/vvv7l79+5xhw8f5ho0aMD5+fkZ3Ll4V69evbhu3bpxALiXL19WqHOhzfMBgFu/fr3Sem/evKlQ50Nb52LJkiWck5MTt2XLFi4lJYW7dOkS9+uvv/LtGRkZnL29Pefv789dvXqV27p1K2dhYcH9+OOP/DqnTp3ijI2NuYiICO769etcWFgYZ2pqyl25coVfZ+HChZxMJuP27t3LXbp0ievZsyfn6uqqdN51eS5ev35dYh1fX1+uffv2/HEqwvuClD0aoBm4Z8+ecQC448ePM9fx8PDgRo4cKbqfr7/+muvYsSP/fMqUKVzjxo2V1hkwYADn6+vLP//oo4+4oKAg/nlBQQHn5OTEhYeHcxzHcenp6ZypqSm3c+dOfp0bN25wALjExETVXqAatHUuoqKiuBo1avDPDe1c/PDDD1z79u25hISEEgO0inguOE7z8wGA27NnD3Obing+NDkXaWlpnIWFBXf48GHmNj/88ANXtWpVLicnh182depUrkGDBvzzL774guvevbvSdp6entxXX33FcRzHFRYWcg4ODtyiRYv49vT0dM7MzIzbunWr6i9SRdr4znj27BlnamrKbdy4kV9WEd8XRPvoFqeBy8jIAABUq1ZNsP38+fNISkpCQEDAe/fz7j4SExPh4+OjtI6vry8SExMBALm5uTh//rzSOkZGRvDx8eHXOX/+PPLy8pTWcXNzQ82aNfl1tEkb5+Lx48fYvXs32rdvzy8zpHNx/fp1zJ07Fxs3bhSc3LkingugdO+NoKAg2NjY4KOPPsK6devAvVN6siKeD03ORXx8PAoLC/Ho0SM0bNgQNWrUwBdffIEHDx7w6yQmJsLb2xtSqZRf5uvri+TkZLx8+ZJfR+x83b17F3K5XGkdmUwGT09PvTkX/7Zx40ZYWlri888/55dVxPcF0T4aoBmwwsJCTJw4EW3atEGTJk0E11m7di0aNmyI1q1bM/dz+vRpbN++HYGBgfwyuVwOe3t7pfXs7e2hUCjw5s0b/PPPPygoKBBcRy6X8/uQSqWwtrZmrqMtpT0Xfn5+sLS0xAcffAArKyusWbOGbzOUc5GTkwM/Pz8sWrQINWvWFNyuop0LoHTvjblz52LHjh2Ij49Hv3798PXXX2PFihV8e0U7H5qeizt37qCwsBALFixAZGQkdu3ahbS0NHzyySfIzc3lX4fQ6yxuE1vn3fZ3txNaR1u09f25du1aDBo0CBYWFvyyiva+IGWDBmgGLCgoCFevXi0RtFzszZs3iI2NFf3r7+rVq+jVqxdmzZqFLl26lFVXy1xpz8WyZctw4cIF/Prrr0hNTUVISEhZdrdMaXouQkND0bBhQwwePLg8ulluSvPemDFjBtq0aYPmzZtj6tSpmDJlChYtWlTWXS4zmp6LwsJC5OXlYfny5fD19cXHH3+MrVu34vbt2zh69Gh5dF3rtPH9mZiYiBs3brz3DgUxTDRAM1Bjx47F77//jqNHj6JGjRqC6+zatQuvX7/G0KFDBduvX7+Ozp07IzAwEGFhYUptDg4OJbKFnj59CisrK1hYWMDGxgbGxsaC6zg4OPD7yM3NLZEF+O462qCNc+Hg4AA3Nzf07NkTP/74I1avXo0nT57wbYZwLo4cOYKdO3fCxMQEJiYm6Ny5MwDAxsYGs2bN4l9HRTkXgHbeG+/y9PTEw4cPkZOTA6BinY/SnAtHR0cAQKNGjfhltra2sLGxwf379/nXIfQ6i9vE1nm3/d3thNbRBm29L9asWQMPDw+0bNlSaXlFel+QskMDNAPDcRzGjh2LPXv24MiRI3B1dWWuu3btWvTs2RO2trYl2q5du4aOHTvi/9q795gozq8P4N8F2YVlQKBSsIpcFCggN0HbBREaNaKxRZtWi7WFeCsl1GiDpV6hWi9/UC81Fo1GQWxabdXSgLYiiCKKl9BFlNtKRcCuxUsUUSzKnt8fvszryq6KLLiG80lM5HmeOc8zZwY4mdkZYmJisHLlyg79CoUCeXl5Wm25ublQKBQAAKlUiqCgIK0xGo0GeXl54pigoCCYmZlpjamqqkJdXZ04pisMlYsnaTQaABB/CfeWXOzduxelpaVQKpVQKpXibd7CwkLxdQqvQi6A7js3lEolbG1txT+G/SrkwxC5CA0NFdfV7ubNm7h+/TqcnZ0BPMrFsWPH8ODBA3FMbm4uPD09YWtrK455Wr5cXV3h6OioNaapqQmnTp0ymly0a25uxp49e3RePXsVzgvWA17iAwrsJfj888+pb9++VFBQoPWY971797TGqVQqkkgkdPDgwQ4xysrKyN7enqZPn64Vo7GxURzT/pj4ggULqKKigjZt2qTzMXGZTEbp6elUXl5Oc+bMIRsbG7p69ao4Ji4ujgYNGkT5+fl09uxZUigUpFAojCYXOTk5tH37diorK6NLly5RdnY2eXl5UWhoaK/LxZOOHDmi9zUbxpwLIsPk4/fff6etW7dSWVkZqVQq+uGHH0gul9OyZcteqXwY6tyIiooiHx8fKioqorKyMpo4cSJ5e3tTa2srET166tDBwYE++eQTOn/+PP38888kl8s7vGajT58+lJqaShUVFZScnKzzNRs2NjaUlZVF586do6ioKIO9ZsOQ3yfbtm0jc3Nzre+Pdq/CecG6HxdovQwAnf927NihNW7hwoXk5OREbW1tHWIkJyfrjOHs7Kw17siRIxQQEEBSqZTc3Nw6zEFEtHHjRho0aBBJpVIaMWIEFRcXa/W3tLRQfHw82draklwup8mTJ5Nare5qGojIMLnIz88nhUJBffv2JXNzc3J3d6ekpKQOP3R7Qy6epKtAa2835lwQGSYfBw8epICAABIEgSwtLcnf3582b97cYayx58NQ58bt27dpxowZZGNjQ3Z2djR58mSqq6vTGlNaWkojR44kmUxGAwYMoDVr1nSIs2fPHvLw8CCpVEo+Pj6Uk5Oj1a/RaGjp0qXk4OBAMpmMRo8eTVVVVV1Lwv8x5PeJQqGgadOm6e039vOCdT8J0WPPfDPGGGOMsZeOP4PGGGOMMWZkuEBjjDHGGDMyXKAxxhhjjBkZLtAYY4wxxowMF2iMMcYYY0aGCzTGGGOMMSPDBRpjjDHGmJHhAo0xxhhjzMhwgcbYK0QikeC3334DANTW1kIikUCpVL7UNXXF1atXMXbsWFhaWsLGxqbH54+NjcWkSZO6dY6eOk6xsbGQSCRa58iLSklJEWOtX7/eIOtjjHUOF2iMvaKcnJygVqsxdOhQg8Z1cXHpsV/K69atg1qthlKpRHV1dY/M+bgNGzYgPT3dYPF0FXzddZx0iYyMhFqtxvjx47sUJzExEWq1GgMHDjTQyhhjndXnZS+AMaattbUVUqn0meNMTU3h6OjYAyvqPjU1NQgKCoK7u7tB4z5vDvv27WvQeXXpyeMkk8kMMpcgCBAEAaampgZYFWPsRfAVNNZrXLt2DY6Ojli1apXYduLECUilUuTl5endrqGhAdHR0bCzs4OlpSWCg4Nx6tQpsT8tLQ2DBw+GVCqFp6cnMjMztbavq6tDVFQUBEGAtbU1pkyZgn///VfsT0lJQUBAALZt2wZXV1eYm5sDAFQqFUaNGgVzc3N4e3sjNzdXK+6Tt84KCgogkUiQl5eH4OBgyOVyhISEoKqqStympqYGUVFRcHBwgCAIGD58OA4fPiz2R0RE4PLly5g/f754i6vd8ePHERYWBgsLCzg5OWHu3Lm4e/fuU3P+tNy4uLhg79692LlzJyQSCWJjY3XGaL8q9c0338De3h7W1taIi4tDa2ur1roTEhIwb9489OvXD+PGjQMAHD16FCNGjIBMJkP//v3x9ddf4+HDhx1it9NoNFi9ejVcXV1hYWEBf39//Prrr1rruXDhAiZOnAhra2tYWVkhLCwMNTU1SElJQUZGBrKyssTcFRQU6LzF+ax1RUREYO7cufjqq69gZ2cHR0dHpKSkPDXXurTPvWfPHvHYDR8+HNXV1Thz5gyCg4MhCALGjx+Pa9eudTo+Y6wbvey/1s5YT8rJySEzMzM6c+YMNTU1kZubG82fP1/v+Dt37pCbmxuFhYVRYWEhqVQq2r17N504cYKIiPbt20dmZma0adMmqqqqou+++45MTU0pPz+fiIja2tooICCARo4cSWfPnqXi4mIKCgqi8PBwcY7k5GSytLSkyMhIKikpodLSUmpra6OhQ4fS6NGjSalU0tGjRykwMJAA0P79+4mI6NKlSwSA/vrrLyIiOnLkCAGgt956iwoKCujChQsUFhZGISEh4lxKpZI2b95MZWVlVF1dTUuWLCFzc3O6fPkyERHduHGDBg4cSMuXLye1Wk1qtZqIiC5evEiWlpa0bt06qq6upqKiIgoMDKTY2Fi9uXtWbhobGykyMpKmTJlCarWabt26pTNOTEwMCYJAU6dOpfPnz1N2djbZ29vTokWLxDHh4eEkCAItWLCAKisrqbKykhoaGkgul1N8fDxVVFTQ/v37qV+/fpScnKwVOyoqSvz622+/pTfffJP++OMPqqmpoR07dpBMJqOCggIiImpoaCA7Ozt6//336cyZM1RVVUXbt2+nyspKunPnDk2ZMoUiIyPF3P33338djtPzrCs8PJysra0pJSWFqqurKSMjgyQSCR06dEhvvp/cF6L/P0fa96m8vJzefvttCgoKooiICDp+/DiVlJTQkCFDKC4urkNMZ2dnWrdund45GWPdhws01uvEx8eTh4cHTZs2jXx9fen+/ft6x27ZsoWsrKzoxo0bOvtDQkJo9uzZWm0ffvghTZgwgYiIDh06RKamplRXVyf2X7hwgQDQ6dOniehRgWZmZkaNjY3imD///JP69OlDV65cEdsOHjz4XAXa4cOHxW1ycnIIALW0tOjdRx8fH9q4caP4ta5fyjNnzqQ5c+ZotRUWFpKJiYne2M/KDRFRVFQUxcTE6F0b0aPCw87Oju7evSu2paWlkSAI1NbWRkSPCprAwECt7RYtWkSenp6k0WjEtk2bNmlt93hRc//+fZLL5WLx/fi+R0dHExHRwoULydXVlVpbW/WuVV+R1H6cnmdd4eHhNHLkSK04w4cPp6SkpKfmSd/c27ZtE9t++uknAkB5eXli2+rVq8nT07NDTC7QGHt5+BYn63VSU1Px8OFD/PLLL/jxxx8hk8n0jlUqlQgMDISdnZ3O/oqKCoSGhmq1hYaGoqKiQux3cnKCk5OT2O/t7Q0bGxtxDAA4OzvD3t5eK66TkxPeeOMNsU2hUDzX/vn5+Yn/79+/PwCgsbERANDc3IzExER4eXnBxsYGgiCgoqICdXV1T41ZWlqK9PR08bNJgiBg3Lhx0Gg0uHTpks5tnpWbzvD394dcLhe/VigUaG5uRn19vdgWFBTUYX6FQqF1mzY0NBTNzc1oaGjoMMfFixdx7949jB07Vms/d+7ciZqaGgCPzoewsDCYmZl1eh86u67HjyPw6Fi2H8fOejyWg4MDAMDX11er7UVjM8a6Bz8kwHqdmpoa/PPPP9BoNKitrdX6RfUkCwuLHlmTpaWlwWI9Xjy0FwEajQbAo6fzcnNzkZqaiiFDhsDCwgIffPCB1ue5dGlubsZnn32GuXPndugbNGiQwdbeFV3NYXNzMwAgJycHAwYM0OprL+J76nwA0KEIlEgk4nHsSqz2c+LJtheNzRjrHnwFjfUqra2tmD59OqZOnYoVK1Zg1qxZT71y4OfnB6VSiZs3b+rs9/LyQlFRkVZbUVERvL29xf76+nqtKz3l5eW4deuWOEZf3Pr6eqjVarGtuLj4ufbxaYqKihAbG4vJkyfD19cXjo6OqK2t1RojlUrR1tam1TZs2DCUl5djyJAhHf7pe1ryWbnpjNLSUrS0tIhfFxcXQxAErSuTuuY/efIkiEhrfisrK52vj/D29oZMJkNdXV2HfWyfx8/PD4WFhXjw4IHOOXXlrqvrYoz1TlygsV5l8eLFuH37Nr7//nskJSXBw8MDM2bM0Ds+Ojoajo6OmDRpEoqKivD3339j7969OHnyJABgwYIFSE9PR1paGlQqFdauXYt9+/YhMTERADBmzBj4+vri448/RklJCU6fPo1PP/0U4eHhCA4O1jvvmDFj4OHhgZiYGJSWlqKwsBCLFy/u8v67u7tj3759UCqVKC0txbRp0zpcOXFxccGxY8dw5coVXL9+HQCQlJSEEydOICEhAUqlEiqVCllZWUhISNA717Ny0xmtra2YOXMmysvLceDAASQnJyMhIQEmJvp/hMXHx6O+vh5ffPEFKisrkZWVheTkZHz55Zc6t7OyskJiYiLmz5+PjIwM1NTUoKSkBBs3bkRGRgYAICEhAU1NTfjoo49w9uxZqFQqZGZmik/Kuri44Ny5c6iqqsL169d1FnKdXRdjrHfinwas1ygoKMD69euRmZkJa2trmJiYIDMzE4WFhUhLS9O5jVQqxaFDh/D6669jwoQJ8PX1xZo1a8T3Q02aNAkbNmxAamoqfHx8sGXLFuzYsQMREREAHt06ysrKgq2tLUaNGoUxY8bAzc0Nu3fvfupaTUxMsH//frS0tGDEiBGYNWsWVq5c2eUcrF27Fra2tggJCcG7776LcePGYdiwYVpjli9fjtraWgwePFj8XJyfnx+OHj2K6upqhIWFITAwEMuWLdP6jNyTnpWbzhg9ejTc3d0xatQoTJ06Fe+9994zXzsxYMAAHDhwAKdPn4a/vz/i4uIwc+ZMLFmyRO82K1aswNKlS7F69Wp4eXkhMjISOTk5cHV1BQC89tpryM/PR3NzM8LDwxEUFIStW7eKtwtnz54NT09PBAcHw97evsMVxBddF2Os95HQ49fZGWPMyMTGxuLWrVtd/vNFukRHR8PU1BS7du0yeOye1h15cnFxwbx58zBv3jyDxWSMPR++gsYY63UePnyI8vJynDx5Ej4+Pi97OQaTnZ0NQRCQnZ3dpTirVq2CIAjPfLqXMdZ9+AoaY8yodceVIaVSiZCQELzzzjvYtWsXbG1tDRb7ZWlsbERTUxOAR6/k6MpTrTdv3hQfjLG3t++RP4nFGNPGBRpjjDHGmJHhW5yMMcYYY0aGCzTGGGOMMSPDBRpjjDHGmJHhAo0xxhhjzMhwgcYYY4wxZmS4QGOMMcYYMzJcoDHGGGOMGRku0BhjjDHGjMz/AMuHdcDliM7SAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "xr_swot_raster100.wse.plot(cmap='cividis')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2. Plot data on maps with cartopy" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_160234/2149712467.py:21: MatplotlibDeprecationWarning: Getting the array from a PolyQuadMesh will return the full array in the future (uncompressed). To get this behavior now set the PolyQuadMesh with a 2D array .set_array(data2d).\n", " plt.colorbar(\n", "/tmp/ipykernel_160234/2149712467.py:21: MatplotlibDeprecationWarning: Getting the array from a PolyQuadMesh will return the full array in the future (uncompressed). To get this behavior now set the PolyQuadMesh with a 2D array .set_array(data2d).\n", " plt.colorbar(\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABPgAAAKpCAYAAAAhRZLyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACYaElEQVR4nOzdeXxU1fn48efOZBkISdizsAY0bAqK2hjQIpUWsC6ov6qUirb5am2logIKfguiVEEQrYrVal2+raICrUgtUikiKgQVBRQtCBjWLIACIZB15vz+gAyZZObczD538nm/Xnm9mPucc+5zT24mJw937jWUUkoAAAAAAAAAWJIt2gkAAAAAAAAACBwFPgAAAAAAAMDCKPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8JmYOXOmGIbh8dW3b193/Ne//rX07t1bWrVqJZ06dZKrrrpKtm7dqh1TKSUzZsyQrKwsadWqlYwYMUK2b9/epN2//vUvycvLk1atWkm7du1kzJgxHvFly5ZJbm6u9OnTR95++2339qysLJkzZ45H26lTp4phGPL+++97bL/kkkvkxhtvbOZshF605rdnz55N9tt4zp5//nnp0aOHnHvuufLxxx+LiEhFRYUkJibK66+/7tH2hhtuEMMwZNeuXU32M336dH+nJSSiee6KiFRXV8s555wjhmHIpk2bPGJWn1uR6M3vlVdeKd27dxeHwyFZWVly4403SnFxsUcb5tc7s/ndtWuXFBQUSE5OjrRq1Up69+4t999/v9TU1HiMEw/zC8B6WJOGD+vR8GJNGj6sR8OL9SgsR0Hr/vvvVwMGDFAlJSXur4MHD7rjf/7zn9WaNWtUUVGR+uyzz9QVV1yhunXrpurq6nyOOWfOHJWenq6WLl2qNm/erK688kqVk5OjKisr3W2WLFmi2rVrp5555hm1bds29dVXX6k33njDHa+qqlJdu3ZVK1euVO+++67q2rWrqq6uVkopdcMNN6iRI0d67PMHP/iB6tatm7r//vvd2yorK1VycrJ68cUXg52mgEVrfnv06KEefPBBj/1WVFS447t371ZnnHGGWrdunVq8eLHq16+fO3bhhReqX//61x77zMjIUN26dVMvvfSSe9u3336rRES99957wUxRwKI1t/XuuOMONXr0aCUiauPGje7t8TC3SkVvfh977DFVWFiodu3apdauXavy8/NVfn6+O878Bj6/77zzjrr55pvVv//9b7Vz50711ltvqc6dO6tJkya5x4iX+QVgPaxJw4f1aHixJg0f1qPhxXoUVkOBz8T999+vBg0a1Oz2mzdvViKiduzY4TXucrlUZmammjdvnnvbkSNHVHJysnrttdeUUkrV1taqLl26qL/85S8+93P06FHVo0cPdfDgQXXw4EHVs2dPVV5erpQ6+UbTpk0bVVtbq5RSqry8XCUmJqoFCxaoYcOGucd47733lIiooqKiZh9fqEVjfpU6uaB6/PHHfe7nyy+/VOeff76qqKhQ3377rerZs6c7Nm3aNNWnTx/366+//lqlp6erhx9+WN10003u7S+++KJKTk72utCIhGjNrVJKLV++XPXt21d99dVXTRZT8TC3SkV3fht66623lGEYqqamRinF/IZ6fufOnatycnLcr+NlfgFYD2vS8GE9Gl6sScMnVtZLrEdPYj2KaOMjus2wfft2yc7Oll69esm4ceNkz549XtsdP35cXnrpJcnJyZFu3bp5bVNUVCSlpaUyYsQI97b09HTJy8uTwsJCERH5/PPPZf/+/WKz2eTcc8+VrKwsGT16tGzZssXdJy0tTX75y19KVlaWZGdny29+8xtJTU0VEZHhw4dLRUWFfPrppyIi8uGHH0pubq5ce+218vHHH0tVVZWIiKxevVp69uwpPXv2DHqOghHp+a03Z84c6dChg5x77rkyb948qaurc8fOOussGThwoKSnp8uAAQPkD3/4gzs2fPhw2bZtm5SUlIjIyXm86KKL5Ec/+pHHx01Wr14t+fn54nA4/J6TUInG3JaVlcktt9wif/vb36R169ZNxomXuRWJ3rlb7/vvv5dXX31VhgwZIomJiSLC/IZyfkVEjh49Ku3bt3e/jqf5BWA9rEnDh/VoeLEmDZ9or5dYj57EehQxIdoVxli3fPlytWjRIrV582a1YsUKlZ+fr7p37+7+n0mllHr66adVSkqKEhHVp08fnxV7pZRau3atEhFVXFzssf1nP/uZuu6665RSSr322mtKRFT37t3VkiVL1IYNG9TYsWNVhw4d1HfffefR78iRIx651OvSpYt6+OGHlVJKTZkyRf32t79VSimVm5vrvgz34osvVr/85S8DmJXQicb8KqXU/Pnz1erVq9XmzZvVM888o9q2bavuuuuuJuMdOnRInThxwmPb8ePHVVJSklq4cKF77Llz56ra2lqVkpKivv32W6WUUt27d1cPPPCA/5MSItGYW5fLpUaNGqVmzZqllFKqqKioyf+W1rPy3CoVvXNXKaXuuece1bp1ayUi6sILL1SHDh1qMh7z68mf+a23fft2lZaWpp577rkmMavPLwDrYU0aPqxHw4s1afiwHg0v1qOwGgp8fjp8+LBKS0vz+KjCkSNH1DfffKPWrFmjrrjiCjV48GCfl7o254f61VdfVSKi/vznP7vjVVVVqmPHjurZZ59tVp7jxo1TP/nJT5RSSl1wwQVq0aJFSimlbrnlFjVjxgx14sQJlZSUpP761782/+AjIBLz680LL7ygEhISVFVVVbPyHDp0qLr11luVUkp17txZffLJJ0oppX784x+rF198Ue3cuVOJiPrggw+aNV4kRGJun3jiCTV06FD3fSd0iylfrDi3SkX23D148KDatm2bevfdd9XQoUPVZZddplwuV7PyZH6b996wb98+1bt3b1VQUOBXnladXwDWw5o0fFiPhhdr0vBhPRperEcR6/iIrp/atm0rubm5smPHDve29PR0OfPMM+WHP/yhLFmyRLZu3Spvvvmm1/6ZmZkicvKS8YbKysrcsaysLBER6d+/vzuenJwsvXr18nlJcGPDhw+XtWvXynfffScbN26UYcOGiYjIsGHDZPXq1bJu3TqpqamRH/3oR8088siIxPx6k5eXJ3V1dU2eLOTL8OHDZfXq1fLVV19JZWWlDB48WEROz+/q1auldevWkpeX16zxIiESc/vee+9JYWGhJCcnS0JCgpxxxhkiInL++efLTTfd1Kw8rTi3IpE9dzt27Ci5ubny4x//WF5//XVZvny5rF+/vll5Mr/m81tcXCzDhw+XIUOGyHPPPedXnladXwDWw5o0fFiPhhdr0vBhPRperEcR6yjw+amiokJ27tzpXvA0pk5eFSnV1dVe4zk5OZKZmSmrVq1ybysvL5ePP/5Y8vPzRUTkvPPOk+TkZNm2bZu7TW1trezatUt69OjRrDyHDx8ux48fl8cee0zOPPNM6dy5s4iI/PCHP5RPPvlE3nnnHTnzzDOlS5cuzRovUiIxv95s2rRJbDabe57MDB8+XLZv3y4LFy6Uiy66SOx2u4icnN81a9bI+++/L0OHDpWkpKRmjRcJkZjbJ598UjZv3iybNm2STZs2yfLly0VE5I033pCHHnqoWXlacW5FonfuulwuERGf4zbG/Ornd//+/XLJJZfIeeedJy+99JLYbP79mrTq/AKwHtak4cN6NLxYk4YP69HwYj2KmBfZCwatZ9KkSer9999XRUVFau3atWrEiBGqY8eO6sCBA2rnzp3q4YcfVhs2bFC7d+9Wa9euVVdccYVq3769Kisrc4/Rp08f9Y9//MP9es6cOapt27bqrbfeUl988YW66qqrmjx6fOLEiapLly7q3//+t9q6dasqKChQnTt3Vt9//32zc+/evbtKTU1Vt912m8f2nJwclZqa6r5sN5qiMb/r1q1Tjz/+uNq0aZPauXOneuWVV1SnTp3U+PHjm513ZWWlSk5OVqmpqWrOnDnu7VVVVcrhcKjU1FT3/WaiJVrnbkOBfBzCCnOrVHTmd/369eqpp55SGzduVLt27VKrVq1SQ4YMUb179272x3mYX9/zu2/fPnXGGWeoSy+9VO3bt0+VlJS4v5rLKvMLwHpYk4YP69HwYk0aPqxHw4v1KKyGAp+J66+/XmVlZamkpCTVpUsXdf3117tvnLl//341evRo1blzZ5WYmKi6du2qfv7zn6utW7d6jCEi6qWXXnK/drlcavr06SojI0MlJyerSy+9VG3bts2jT01NjZo0aZLq3LmzSk1NVSNGjFBbtmzxK/ebbrpJiYh6/fXXPbbffPPNSkS0j+KOlGjM72effaby8vJUenq6cjgcql+/furhhx9u9i+kesOGDVMiotavX++x/ZJLLlEiogoLC/2cjdCK1rnbUCCLKaVif26Vis78fvHFF2r48OGqffv2Kjk5WfXs2VPddtttat++fX7lzvx6n9+XXnpJiYjXL39YYX4BWA9r0vBhPRperEnDh/VoeLEehdUYSikVjisDAQAAAAAAAIQf9+ADAAAAAAAALIwCHwAAAAAAAGBhFPgAAAAAAAAAC6PABwAAAAAAAFgYBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwsIRoJxALqqqqpKamJtppAABgSUlJSeJwOKKdBmBprEcBAAhOS1+TtvgCX1VVleTk5EhpaWm0UwEAwJIyMzOlqKioRS+ogGCwHgUAIHgtfU3a4gt8NTU1UlpaKnv37pW0tLRopyMiIiUlJZKVlRXtNOIW8xs+zG14Mb/hxfwGpry8XLp16yY1NTUtdjEFBCsW16MivC+GE3MbXsxv+DC34cX8Bo41KQU+t7S0tJhZUFVUVMRMLvGI+Q0f5ja8mN/wYn4BRFssrUdFeF8MJ+Y2vJjf8GFuw4v5RTB4yAYAAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAAAAAICFUeADAAAAAAAALIwCHwAAAAAAAGBhFPgAAAAAAAAAC6PABwAAAAAAAFgYBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwMAp8AAAAAAAAgIVR4AMAAAAAAAAsjAIfAAAAAAAAYGEU+AAAAAAAAAALo8AHAAAAAAAAWBgFPgAAAAAAAMDCKPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAAAAAICFUeADAAAAAAAALIwCHwAAAAAAAGBhFPgAAAAAAAAAC6PABwAAAAAAAFgYBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwMAp8AAAAAAAAgIVR4AMAAAAAAAAsjAIfAAAAAAAAYGEU+AAAAAAAAAALo8AHAAAAAAAAWBgFPgAAAAAAAMDCKPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAAAAAICFUeADAAAAAAAALIwCHwAAAAAAAGBhFPgAAAAAAAAAC6PABwAAAAAAAFgYBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwML8KfDNnzhTDMDy++vbtq+2zePFi6du3rzgcDjn77LNl+fLlHvGKigqZMGGCdO3aVVq1aiX9+/eXZ5991qPNtm3bZOjQodK1a1f5wx/+4BHr2bOnGIYh69ev99h+5513yiWXXOLP4QEAgDBg/YBQ4nwCAACBiPc1hN9X8A0YMEBKSkrcXx999JHPtuvWrZOxY8dKQUGBbNy4UcaMGSNjxoyRLVu2uNvcfffdsmLFCnnllVfkv//9r9x5550yYcIEWbZsmbvNhAkT5Be/+IW89dZb8tZbb8m6des89uNwOOTee+/191AAAECEsH5AKHE+AQCAQMTzGsLvAl9CQoJkZma6vzp27Oiz7RNPPCGjRo2SKVOmSL9+/WTWrFkyePBgWbBggbvNunXr5KabbpJLLrlEevbsKbfeeqsMGjRIPvnkE3ebw4cPy3nnnScDBw6U7OxsOXLkiMd+br31Vlm/fn2TSioAAIgNrB8QSpxPAAAgEPG8hvC7wLd9+3bJzs6WXr16ybhx42TPnj0+2xYWFsqIESM8to0cOVIKCwvdr4cMGSLLli2T/fv3i1JKVq9eLd9884385Cc/cbd58MEHZcSIEdK6dWux2WwycuRIjzFzcnLktttuk2nTponL5fL3kAAAQJixfkAocT4BAIBAxPMawq8CX15enrz88suyYsUKeeaZZ6SoqEguvvhiOXbsmNf2paWlkpGR4bEtIyNDSktL3a+feuop6d+/v3Tt2lWSkpJk1KhR8vTTT8sPf/hDd5vLLrtMDh48KMXFxfLmm2+K3W5vsq/f//73UlRUJK+++qo/hwQAAMKM9QNCifMJAAAEIt7XEAn+NB49erT73wMHDpS8vDzp0aOHLFq0SAoKCgJK4KmnnpL169fLsmXLpEePHvLBBx/I7bffLtnZ2R6V0uTkZOnUqZPPcTp16iSTJ0+WGTNmyPXXX+93HiUlJVJRURHQMYTa4cOHo51CXGN+w4e5DS/mN7yY38D4WhA1FM/rB0RePJ9PsbQeFeF9MZyY2/BifsOHuQ0v5jdwlZWVpm3ieQ0h4meBr7G2bdtKbm6u7Nixw2s8MzNTysrKPLaVlZVJZmamiJz8Btx3333y5ptvyk9/+lMROTnJmzZtkkcffbTJpZBm7r77bvnTn/4kf/rTn/w+lqysLElLS/O7X7hkZ2dHO4W4xvyGD3MbXsxveDG//isvL/e7TzytHxB98XQ+xdp6VIT3xXBibsOL+Q0f5ja8mN/AsCYN4B58DVVUVMjOnTslKyvLazw/P19WrVrlsW3lypWSn58vIiK1tbVSW1srNptnGna7PaDPHbdp00amT58uDz30ULOuKAAAAJHH+gGhxPkEAAACEW9rCL8KfJMnT5Y1a9bIrl27ZN26dXL11VeL3W6XsWPHiojI+PHjZdq0ae72EydOlBUrVsj8+fNl69atMnPmTNmwYYNMmDBBRETS0tJk2LBhMmXKFHn//felqKhIXn75ZfnrX/8qV199td8HI3Ly6SPp6emycOHCgPoDAIDQYv2AUOJ8AgAAgYj3NYRfBb59+/bJ2LFjpU+fPnLddddJhw4dZP369e7PEe/Zs0dKSkrc7YcMGSILFy6U5557TgYNGiRLliyRpUuXyllnneVu8/rrr8sFF1wg48aNk/79+8ucOXPkoYcekttuu83vgxERSUxMlFmzZklVVVVA/QEAQGixfkAocT4BAIBAxPsawlBKqYD2GifKy8slPT1djh49GjP3PCkuLuZz92HE/IYPcxtezG94Mb+BicXfo4DVxOrPEe+L4cPchhfzGz7MbXgxv4GL1d+lkRTUPfgAAAAAAAAARBcFPgAAAAAAAMDCKPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAAAAAICFUeADAAAAAAAALIwCHwAAAAAAAGBhFPgAAAAAAAAAC6PABwAAAAAAAFgYBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwMAp8AAAAAAAAgIVR4AMAAAAAAAAsjAIfAAAAAAAAYGEU+AAAAAAAAAALo8AHAAAAAAAAWBgFPgAAAAAAAMDCKPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAAAAAICFUeADAAAAAAAALIwCHwAAAAAAAGBhFPgAAAAAAAAAC6PABwAAAAAAAFgYBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwMAp8AAAAAAAAgIVR4AMAAAAAAAAsjAIfAAAAAAAAYGEU+AAAAAAAAAALo8AHAAAAAAAAWBgFPgAAAAAAAMDCKPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAAAAAICFUeADAAAAAAAALIwCHwAAAAAAAGBhFPgAAAAAAAAAC6PABwAAAAAAAFgYBT4AAAAAAADAwhKinQAA+OPt1+4ybXP52McjkAkAAABaoooap2mbNkn2CGQCAKdxBR8AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAAAAAICFUeADAAAAAAAALCwh2gkAgD8uH/t4tFMAAABAC9YmyR7tFACgCb+u4Js5c6YYhuHx1bdvX22fxYsXS9++fcXhcMjZZ58ty5cv94g3Hq/+a968ee42hYWFcs4550jPnj3lhRdeaNLf4XDI7t27PbaPGTNGbr75Zn8ODwAAhAHrB4Qa5xQAAPBXvK8f/P6I7oABA6SkpMT99dFHH/lsu27dOhk7dqwUFBTIxo0bZcyYMTJmzBjZsmWLu03DsUpKSuTFF18UwzDk2muvdbcpKCiQ6dOny8KFC2X27Nmyd+9ej/0YhiEzZszw91AAAECEsH5AqHFOAQAAf8Xz+sHvAl9CQoJkZma6vzp27Oiz7RNPPCGjRo2SKVOmSL9+/WTWrFkyePBgWbBggbtNw7EyMzPlrbfekuHDh0uvXr3cbY4fPy6DBw+WQYMGSbt27eTYsWMe+5kwYYK88sorHpMMAABiB+sHhBrnFAAA8Fc8rx/8LvBt375dsrOzpVevXjJu3DjZs2ePz7aFhYUyYsQIj20jR46UwsJCr+3LysrkX//6lxQUFHhsnzFjhvTr10/S09PlwgsvlP79+3vEhw4dKpdffrlMnTrV38MBAAARwPoBocY5BQAA/BXP6we/Cnx5eXny8ssvy4oVK+SZZ56RoqIiufjii5tUH+uVlpZKRkaGx7aMjAwpLS312v7//u//JDU1Va655hqP7QUFBfLdd9/JwYMH5amnnvLad/bs2bJixQr58MMP/TkkAAAQZqwfEGqcUwAAwF/xvn7w6ym6o0ePdv974MCBkpeXJz169JBFixY1qVAG4sUXX5Rx48aJw+FoEktJSZGUlBSfffv37y/jx4+XqVOnytq1a4POBQAAhAbrB4Qa5xQAAPBXvK8f/CrwNda2bVvJzc2VHTt2eI1nZmZKWVmZx7aysjLJzMxs0vbDDz+Ubdu2yRtvvBFwPg888IDk5ubK0qVL/e5bUlIiFRUVAe87lA4fPhztFOIa8xs+zG14Mb/hxfwGxtf/eOrE0/oBsSFezqlYWo+K8L4YTsxteDG/4cPchhfzG7jKykq/+8TL+qFeUAW+iooK2blzp9x4441e4/n5+bJq1Sq588473dtWrlwp+fn5Tdq+8MILct5558mgQYMCzqdbt24yYcIEue+++6R3795+9c3KypK0tLSA9x1q2dnZ0U4hrjG/4cPchhfzG17Mr//Ky8v97hNP6wfEhng5p2JtPSrC+2I4MbfhxfyGD3MbXsxvYFiT+nkPvsmTJ8uaNWtk165dsm7dOrn66qvFbrfL2LFjRURk/PjxMm3aNHf7iRMnyooVK2T+/PmydetWmTlzpmzYsEEmTJjgMW55ebksXrxY/ud//sfvA2hs2rRpUlxcLP/5z3+CHgsAAASP9QNCjXMKAAD4K97XD34V+Pbt2ydjx46VPn36yHXXXScdOnSQ9evXS6dOnUREZM+ePVJSUuJuP2TIEFm4cKE899xzMmjQIFmyZIksXbpUzjrrLI9xX3/9dVFKuSc1GO3bt5d7771Xqqqqgh4LAAAEj/UDQo1zCgAA+Cve1w+GUkoFnYGFlZeXS3p6uhw9ejRmPhJRXFzMZblhxPyGD3MbXsxveDG/gYnF36OA1cTqzxHvi+HD3IYX8xs+zG14Mb+Bi9XfpZHk1xV8AAAAAAAAAGILBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwMAp8AAAAAAAAgIVR4AMAAAAAAAAsjAIfAAAAAAAAYGEU+AAAAAAAAAALo8AHAAAAAAAAWBgFPgAAAAAAAMDCKPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAAAAAICFUeADAAAAAAAALIwCHwAAAAAAAGBhFPgAAAAAAAAAC6PABwAAAAAAAFgYBT4AAAAAAADAwhKinQAARNLIa35n2ubf/3gqApm0LJMmTzFtM//ReRHIBAAAILqqnC7TNg471+KEw/z5H5i2mTTphxHIBAg93jUAAAAAAAAAC6PABwAAAAAAAFgYBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwMAp8AAAAAAAAgIVR4AMAAAAAAAAsLCHaCQCILbfdfrdpm2effixs+3/mianaeJ3T0MaPVujjzTFj+jRt/MFZs4PeBwAAAHzb891x0zbdO6SEZd/zZ63SNyg+pg2vefYv2viiumWmOby6Zqc2Pm5Yb9MxALQsFPgQt37xy4let3fr0lk2fl1q2n/FP54KdUqIARefk6qN19SqCGXSssx/dF60UwAAIOIe+cnLXrennZEk5TtqJGvaRaZjjB9+RoizQrR9UfSdNr59f3mEMml5Jk36YbRTAMKGj+gCAAAAAAAAFkaBDwAAAAAAALAwCnwAPITz/noAAAAAACD0KPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhSVEOwEALcvTj0/Vxm38t4NlTZlyj2mbefPmRiCT0Pv1b+8ybfPnPz0egUwAAEAovPL+zmingDC40rjctM0y9XYEMgm9E7VO0zatE+0RyASxigIfgCai+aANpUziLn28dbJ+gCMV+v6GoY8DAAAg/Lp3SInavp2fFGvjH739hjY+7J4J2viho9XaeL/ubbVxAPCGAh/i1isvPeF1e3FxsWRnZ0c4GwAAALQ09757s9ftrEcBAKHGh+EAAAAAAAAAC6PABwAAAAAAAFgYBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwMJ6iCwBx4p577tHGnS6ljdsMI5TpAAAAoIV5eMDj2vjFi8dq4+tnrdHGP1n0ht85AS0FBT4AEWW36+NOp0ncFVw8OUlfxGqVpC+Cwbd4rg8mJXLBOwAA8eTdn8zwGbMF+UG3NXMXaOM1q0Zr472W/SKo/bdkybakaKcQNs/Med+0zaTpl4Y/EcQs/mIBAAAAAAAALIwCHwAAAAAAAGBhFPgAAAAAAAAAC6PABwAAAADAKS4xuakzAMQgCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYQnRTgBAy2IY+rgSfQOz/k6TW6Y4nUob/3BjhX4AEbnbtEVsstsMmTt3brTTsKSnnpgf7RQAAEAIDcgfro2v/WBp2Pad9OPe2nhW+9Zh23e4rf96lT4+YJUsU2/7jF/82vX6HZjF49ik6ZdGOwXEOK7gAwAAAAAAACyMAh8AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWlhDtBADEnqcfnxpQv9ZtOkjl8e+0bez2gIaOKdN/P81nrKraqe07b97cUKcDAAAQd45W1WrjT5//tM9Y+tkpcmy/fnzDMAJJK2Z8U1LuM/bPlz8z7T9p2vBQpgMgBlDgAxBRdXX6uFL6uM1kLWa2Vjt6TJ9A14wkbbxtqj4eTZUmxUUAAACctPaDpWEb+/z0c7Xxy+/I18Z3aop3IiJtHIl+5xQpvVr3jHYKQIvFR3QBAAAAAAAAC6PABwAAAAAAAFgYBT4AAAAAAADAwijwAQAAAACAoP3x+IJopwC0WBT4AAAAAAAAAAujwAcAAAAAAABYWEK0EwCAlmTylHt8xmprXdq+GRmd5MCBg6FOCQAAAC3MNyXlPmP/fOsrn7E2raql8JZ7tWO3TUwPOC8AgaPAB6AJlzK0cZuhAu6r9DUscfkeWkREKqv1cadLv//jVU5t3JGkv7C5tk5/AC7l+wAMQ59bsJISuCgbAADEhxtbXR1w35y2veTwJ9+FMBs/2fVrst2lFdr4oWNV2njJYt8FOBGRH00aqo2nJCdq4wCsib8GAQAAAAAAAAvzq8A3c+ZMMQzD46tv377aPosXL5a+ffuKw+GQs88+W5YvX96kzX//+1+58sorJT09XVJSUuSCCy6QPXv2uOPbtm2ToUOHSteuXeUPf/iDR9+ePXuKYRiyfv16j+133nmnXHLJJf4cHgAACAPWDwglzicAABCIeF9D+H0F34ABA6SkpMT99dFHH/lsu27dOhk7dqwUFBTIxo0bZcyYMTJmzBjZsmWLu83OnTvloosukr59+8r7778vX3zxhUyfPl0cDoe7zYQJE+QXv/iFvPXWW/LWW2/JunXrPPbjcDjk3nv19wEAAADRw/oBocT5BAAAAhHPawi/78GXkJAgmZmZzWr7xBNPyKhRo2TKlCkiIjJr1ixZuXKlLFiwQJ599lkREfnf//1fueyyy2Tu3Lnufr179/YY5/Dhw3LeeefJwIEDJTs7W44cOeIRv/XWW+XZZ5+V5cuXy2WXXebvIQEAgDBj/YBQ4nwCAACBiOc1hN9X8G3fvl2ys7OlV69eMm7cOI/LDhsrLCyUESNGeGwbOXKkFBYWioiIy+WSf/3rX5KbmysjR46Uzp07S15enixdutSjz4MPPigjRoyQ1q1bi81mk5EjR3rEc3Jy5LbbbpNp06aJy2VyB38AABBxrB8QSpxPAAAgEPG8hvCrwJeXlycvv/yyrFixQp555hkpKiqSiy++WI4dO+a1fWlpqWRkZHhsy8jIkNLSUhEROXDggFRUVMicOXNk1KhR8u6778rVV18t11xzjaxZs8bd57LLLpODBw9KcXGxvPnmm2K325vs6/e//70UFRXJq6++6s8hAQCAMGP9gFDifAIAAIGI9zWEXx/RHT16tPvfAwcOlLy8POnRo4csWrRICgoK/N55fWXyqquukrvuuktERM455xxZt26dPPvsszJs2DB32+TkZOnUqZPPsTp16iSTJ0+WGTNmyPXXX+93LiUlJVJRoX9ceaQcPnw42inEtViY3//7v79p461bNf2Bb8jsyfY2k9K9Yejjrdt00I9vKK/bkxypokQ/uDL5DwnvI5+W6NDHXUq//zqp0Y+foJ88s7hT8z8uhsnc1Dn1R5+elqaN20y+ryIixcXF5o1aqFh4b7AiXwuihuJ5/YDIi+fzKZbWoyK8L4ZTrMzt8+P+7DPW/bcjfcZEROqq6rTxHc//UxtvY2+jjecM7aWN63TukyEp9tbaNu2c+vVuMNq2aaeNuyr13/+E2lptvE2GNiyVR7/T7z9R/7dGm1bVPmOOpDrpkt9V2z8lQT/3rEd9i5X3BiuqrKw0bRPPawiRAO7B11Dbtm0lNzdXduzY4TWemZkpZWVlHtvKysrcn3fu2LGjJCQkSP/+/T3a9OvXT3ujQ1/uvvtu+dOf/iR/+tOf/O6blZUlaSZ/PEdSdnZ2tFOIa9Ge3wMHD2rj6an6Cl6KSZHLblLgMysAmhWKDB/9WytDTlSYLChMCny1+rWi1Nbpk6up0xfJqqpN4vrdi8tlVoL0zWnSV5nE7TaR+6ZxA/dwivZ7gxWVl5f73See1g+Ivng6n2JtPSrC+2I4xcLclqz3XWjpeGsrbd+aKv1/mu5Z5/tjbyIi7RP1RbC9Vfu08baJ6T5jKfbWkrxZ/6fu10d3aeOG5n/Encqp7Vsk32rjlXW+cxcRqflCP3eJOZ218bMmj9bGd5bqf3dXlGnmPlWk/U9HyaR7hvlug6DEwnuDFbEmDeAefA1VVFTIzp07JSsry2s8Pz9fVq1a5bFt5cqVkp+fLyIiSUlJcsEFF8i2bds82nzzzTfSo0cPv/Np06aNTJ8+XR566KFmXVEAAAAij/UDQonzCQAABCLe1hB+FfgmT54sa9askV27dsm6devk6quvFrvdLmPHjhURkfHjx8u0adPc7SdOnCgrVqyQ+fPny9atW2XmzJmyYcMGmTBhgrvNlClT5I033pDnn39eduzYIQsWLJB//vOf8tvf/tbvgxE5+fSR9PR0WbhwYUD9AQBAaLF+QChxPgEAgEDE+xrCrwLfvn37ZOzYsdKnTx+57rrrpEOHDrJ+/Xr354j37NkjJSUl7vZDhgyRhQsXynPPPSeDBg2SJUuWyNKlS+Wss85yt7n66qvl2Weflblz58rZZ58tf/nLX+Tvf/+7XHTRRX4fjIhIYmKizJo1S6qqzD5oBwAAIoH1A0KJ8wkAAAQi3tcQhlIq8BtKxYHy8nJJT0+Xo0ePxsw9T4qLi/ncfRjFwvzedfdkbdyy9+Br08Hy9+AzE8w9+ET09+Ezuwdfp04dZepU7sEXLrHw3mBFsfh7FLCaWP054n0xfGJlbm9rdYvP2Nkv6q8+qanQ34Pvk988po2H8x58XfO7md6Db+PRL7TxYO7BZ2bopddq48Heg++3a/5HGze7B997i7b4jLVJrZWKY4ncgy9MYuW9wYpi9XdpJAV1Dz4AAAAAAFoSu6F/Ci0ARAMFPgAAAAAAAMDC9NctAy3Y43On+Ywdr9J/TLR1cov+5DsAAABCYPYP/qSNu46c0MY/3v6+Np7t8P7kSACA9VDgA6Kge6b+Hntmt3k7XqmP6+4ZIiLSppXJDkzuwefrPnpKiYjJ0Gb34HMGGze5JUqwdx1tzj345s2bG9xOfCguLg7LuAAAoGU687arfMYyeujvkWfqmbu14R13vBTU8DmteviMtUvqIG1e+6m2/2eX6e+JbbamDcbaVX/XxlPsKdp4TtVxbXxO5/+Vh8t9r0fP7dlB2/9czf31uEccELv4iC4AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsLCEaCeA+HX/jGnauGHo+9tM4mZaJXvfnprWQY6Vfyc2k/J2sPsHAABA9F1pXO4zZjO53qF9UlttfMCsAm38snHneN1ecfiEHFVH5d6u47T98y+4TBsHAKAeBT7AB6cr8L7KJF5Taz7G1P+dHXgCQXryUX1xVvk4QKV8x+q5zOIufWW1zqkfwGz/ZoVdl0mCdjuVXwAAEBmFny7XxpNtSdp4vza52rjjB118xsp2H5bbx56r7a81pKc+fkueNvzh16Xa+H/yn9TG+/Roq43bDbs27lRObTycjjuPa+NFJ3ZHKBMAVsJHdAEAAAAAAAALo8AHAAAAAAAAWBgFPgAAAAAAAMDCKPABAAAAAAAAFkaBD0BImT1EAwAAAAAAhBYFPgAAAAAAAMDCEqKdAABEm2pw1aHNZmjbOp1coggAAIDoOe48Hu0UAMQgCnwIG7vJ9aFmZZLKan0Lu0khxld/I1HJ9+VKUlvrEzQ0wztNPoe6r6xWGxcRefyxR03bREudUx93unxsd4rU1vmOi4iYfNtMP+KbYNcPUFunH0BRnwMAoEX5W+WbPmN/mfKOtu9HT7+gjZc8+A9t/MBPc71urz1RIyeME3Lbhme1/Z89/zZtvNpVo413uu4ibbzyP0Uy+YVrtG2ipbUjURtP7pHhM5bYKUU+W79H29+p9AveREO//1plvt4HgEjiI7oAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGE/RBQCL+L+//k0OHjzkM27ygGLTJ1eLiDw2f55fOQEAAKBlmXvZX7Xxj95ZpI2f0bqXNv7Y8Sf9zgkABT4AMaqmxns5yunS93M6m1PG8k2ZdDfMqmgAAACIG7WqNtopAECzUOBD2MyYOTuo/tOmTdXG7SYfMLfZvFdi7HZDEhMMqTUpBOnqON8dqdHvXESe/ON80zax6u579d+7Pzx4n9ftDqch1bWGOF2+59ZlUqAzrbABAAD4Id2R6DM26akrtX3XLHhOG09LbquNf7m51Ov21gmVcqKuWt4dN13bPyO5szZeVn1AG//gxRdlmXpb2yZWndergzb+bx9rfRERMQxZ8z8Paft3SuqojR+s8f2pCQCIRdyDDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYRT4AAAAAAAAAAvjKboAEGL33HOPz5jmAcMiIqI0DTp20j/tDQAAABARudK4POC+w+68zWesjf7BzgCiiAIfEICObZPk0JGaaKcRNTbD93abIVLrDHzsWqe+AmYYPnZ+ilL6/i6TCpvN18E1k9n+w8kwyz2KuQEAAIRSysR8n7HkpCq5qP9Ebf81v39MG0+2JWnj1a7A/xbo6sjWxg/XHtXGjzuPB7zvUKj5cq823jGpvTa+u1LfH0BgKPDBsmrqAivUuFwiTpeIzeQD6iZ1JOnULlnfAAAAAJaWm9JbG9/w/Wfa+G19bvG6XVUeEaNVW8k7Y5i2/8c71mjjDptDGwcAtBzcgw8AAAAAAACwMAp8AAAAAAAAgIVR4AMAAAAAAAAsjAIfAAAAAAAAYGEU+AAAAAAAAAALo8AHAAAAAAAAWFhCtBMAYD0nqpTX7Y4aJSeqlLiU97iISKLd0I5tGPq4y+V77JP9tWFJSND/v0ZdnSu4/dv0CZiExamJG4b++JRSMv/RefodAAAAxIGbx57jM3awrFQWP7pU2z/RSNTGq101AWTVPPuqioPqn5rQRhs/VlcR1Pibn37NZ6xrfjf5et/XpmMsVcuCygGA/yjwIWYpTZGoOWw+KiE24+SX0yky6w+zg9oHAAAA4tc3x3dq42ZFon37j3rd7pATUiWGdJp/mdx65QDNCFPMUgQAQET4iC4AAAAAAABgaRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWxlN0gTj0v/87Laj+Lpf+CcZ2m/cnFAMAAAAiInu+P6GNV1bXauPLJq3Qxm998Rq/cwKAeEaBD2EzZco92rhZESkxkQtMY1Viovft9oSTscoq332rXUqSE30XCJ1O/XlhRgXXXVwmAyQk6M9Ls/PaJKxliCGGQXEVAAB/3Jx0ozZu43erJa3aVOwzZlQflW6PX6btv2PkZ9q4zdCv+cqqD2jjOl0d2dr4virfxyYicqyuIuB9N8eR2qM+Y+2cHaRtYnpY9w8gMBT4ELNq61zaeKJJoaW2ziVz5jzSZHtxcbFkZ+t/qQIAAAB2w66N1yr9VWhvX3WvLFNvN9nOehQAEGpcIgUAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAAAAAICFUeADAAAAAAAALCwh2gkACL2HHpodVP9p06Zq4zW13rfX1Z2M2Uz+66C6VvmMOZ0ubV+7Pbj/l1DK975FRAzD0MZdLn1/l8n4AAAALUH39q2D6n/pQyO08d5ZaT5jB8ts8veb39X2P1hzKKC8QmFfVbE2nprQRhs/VlcRynSaaJ/YzmesjT1Fimq/Dev+AQSGAh+ixmbTF1LM4tRRAAAAYKZXmxxtfMPhzwMeOyO5c8B9AQAIJT6iCwAAAAAAAFgYBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwMAp8AAAAAAAAgIVR4AMAAAAAAAAsLCHaCQAN2WyG+98ul9K2tdsNbRyBM5t7p9Plc3ttrdPj++id77jZ91UpfW51PnJzj2+SmzI5dsOkv2GYxLVRkaQku89YQgL/JwMAQLh1TGrv/vfR2mPatmXVB8KdTou1+pVN2vjyFzf4jKWfkyZr3/+Xtn9GcmdtPJzf266ObG18X1WxNp6ekBbU/o/WlWvj39ce9r1vZzuxG77XqwCihwIfosa8CAQAAAAEZ8Phz7XxhgU9AACsistBAAAAAACIELMr9AAgEBT4AAAAAMCL9MTUaKcAAECzUOADAAAAAAAALIwCHwAAAAAAAGBhFPgAAAAAAAAAC+MpugjY5Cn3aOM8IxcAAADhdnfKHdFOAQCAqKPAh7AxTCp8dU6XNm4zGcDpVDJv3lx/00IzKKWC7G/aImz7NjtvbDZ9vLZOf14aJqVrl0ufv1nhu7rG6TNWZ5IbAABo6ozWvbTxHSe+1cYTjURt7O+uNwPKC3prZjyujXdK6ugzlt2ji/b7JiJSVn1AG3fYHNq42ZrzhLNSGz9ce9RnLDWhjbbv0bpybdxMTqse2nhR5W5t3Kl8r1cBRA8f0QUAAAAAAAAsjAIfAAAAAAAAYGF+FfhmzpwphmF4fPXt21fbZ/HixdK3b19xOBxy9tlny/Llyz3iN998c5MxR40a5dGmsLBQzjnnHOnZs6e88MILHjHDMMThcMju3Z6XEY8ZM0Zuvvlmfw4PAACEAesHhBrnFAAA8Fe8rx/8voJvwIABUlJS4v766KOPfLZdt26djB07VgoKCmTjxo0yZswYGTNmjGzZssWj3ahRozzGfO211zziBQUFMn36dFm4cKHMnj1b9u7d6xE3DENmzJjh76EAAIAIYf2AUOOcAgAA/orn9YPfBb6EhATJzMx0f3Xs6Pvmpk888YSMGjVKpkyZIv369ZNZs2bJ4MGDZcGCBR7tkpOTPcZs166dR/z48eMyePBgGTRokLRr106OHTvmEZ8wYYK88sorTSYZAADEBtYPCDXOKQAA4K94Xj/4XeDbvn27ZGdnS69evWTcuHGyZ88en20LCwtlxIgRHttGjhwphYWFHtvef/996dy5s/Tp00d+85vfyHfffecRnzFjhvTr10/S09PlwgsvlP79+3vEhw4dKpdffrlMnTrV38MBAAARwPoBocY5BQAA/BXP64cEfxrn5eXJyy+/LH369JGSkhJ54IEH5OKLL5YtW7ZIampqk/alpaWSkZHhsS0jI0NKS0vdr0eNGiXXXHON5OTkyM6dO+W+++6T0aNHS2FhodjtdhE5eTnjDTfcIDU1NU0qofVmz54tAwcOlA8//FAuvvhifw6rRZs85R5t3OVSPmM2m/7R8Ihd9957b7RTQJjovrdK+f55rjd37txQpgOICOsHhB7nVHwZnzQuqP4dEzuEKBNE0vx73ol2CgijK43Lg+q/TL0dokyA0+J9/eBXgW/06NHufw8cOFDy8vKkR48esmjRIikoKAgogRtuuMH977PPPlsGDhwovXv3lvfff18uvfRSdywlJUVSUlJ8jtO/f38ZP368TJ06VdauXet3HiUlJVJRUeF3v3A4fPhwxPbVSXM5qoiIy6QgcNP4G0OZjt+Ki4v97hPJ+Y1VusuQRcwLQb7CqampolRwxV9dUVnEfGyn06WN2+36C5fNjt3sZ8IQfX6GydTohk9La/pLpyGzuWlOgS+Qn6l4wXtDYBp/xMCbeF4/IDri9ZyKpfWoSOTeF7vmdwt6jAmv3RGCTALDejQwbTrq1yWDhg3UxsvrfP+sOHq3lp7Onvr9J7TRxo/UHtXGo6m7vYc2fsJZGdT4Z9vP9hlrn9tBbIZ+Pe1S+vV4c7TUNSnvDYGrrDQ/7+N1/VDPrwJfY23btpXc3FzZsWOH13hmZqaUlZV5bCsrK5PMzEyfY/bq1Us6duwoO3bs8JiM5njggQckNzdXli5d6lc/EZGsrCxJS0vzu1+4ZGdnR2Q/Bw8d0sbNii2RyjPUrJp3qBwy+b4HWuCrHzvYqzt1551Zga621qmNJyQEV+BzmvxMGCYVPLOpMavB6b53oSjwtfSfjZZ+/IEoLy/3u088rR8QG+LlnIq19ahIZN4X9xXuNW9kworv31bMOZQqDm3WxvcX7tPGD9V8r43vW6c/r9oneb+Kpl5Z9QFtPJrSE/TvE0fr/P/d3FD7RP3c7FpbpI07lX493hwt+eejJR97MFiTBnAPvoYqKipk586dkpWV5TWen58vq1at8ti2cuVKyc/P9znmvn375LvvvvM5pk63bt1kwoQJct9994nTGfybCgAACD3WDwg1zikAAOCveFs/+FXgmzx5sqxZs0Z27dol69atk6uvvlrsdruMHTtWRETGjx8v06ZNc7efOHGirFixQubPny9bt26VmTNnyoYNG2TChAkicnIyp0yZIuvXr5ddu3bJqlWr5KqrrpIzzjhDRo4c6ffBiIhMmzZNiouL5T//+U9A/eGfuydNiXYKAIAYx/oBocY5BQAA/BXv6we/Cnz79u2TsWPHSp8+feS6666TDh06yPr166VTp04iIrJnzx4pKSlxtx8yZIgsXLhQnnvuORk0aJAsWbJEli5dKmeddZaIiNjtdvniiy/kyiuvlNzcXCkoKJDzzjtPPvzwQ0lOTvb7YERE2rdvL/fee69UVVUF1B8AAIQW6weEGucUAADwV7yvHwzVnJsyxbHy8nJJT0+Xo0ePxsw9T4qLiyP2uftgnqJb77H580KVTkREcn5jldlTdAO9B1/Hjh25B18Y78FXP78+xw7BPfha8lN0eW8ITCz+HgWsJlZ/jiL1vhjsU3RFRP5a82oIMokcfueYP0X3qyde08Z19+DLGdqLe/AFQXcPvi75XeXrD7/W9g/FPfha6lN0eW8IXKz+Lo2koB6yAQCAyOmi8SOPPBLlTAIz8c7J0rlzJzlw4KDPNk/88dEIZgQAAAB/XGf/fyIissi5JMqZBO6lX7wgB9aXats8ceLpCGUDq6HAF+cmTdbfI8/saiPEpvvum6qNN+fKS8Cbe+7xfVUv7xcAgEDcmPhzbZzfL9Z14Jj+I2Sf7/D9yQNA50rjcp8xh80RwUwA66DAd8o99/6vz89Ix/NVG2bLqWA/aonYZPYxU7Nvu691uGH4jjVkVoC02wM/78w+ghsse5A/EzZb4B8RttkMCaZ0a/bzTGEYAKLrkV6ztX+4Tj9wfwSziZwjtUejnQKiIO+Xg7XxNfP0Vyl1SuroM5aWkCq1qlbb3+wjuJnJGdp4aXWZNm4mxZ7iM2YzWVCbfQS3bWJ6QDnV+772sM9YurOd5LTqoe3fsXdvbXz9lysDyguAXnj/EgYAAAAAAAAQVhT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWxlN0AQAhM2nSFJ+x5jyj97H580KXDAAAAFqc21rd4jPWpU0X0/7TD84MYTZA5FDgi7K7vfwx3KlTRzl48JCIiDid+j+J7Xb9I9RNnrAOII498sgjfrWfNNl3cU5EJMHk/aauzuXX/mJJYqJNEuyGJCZyYTuAlml6+rQm29r/oIN8/8l30nbchdq+6lhNuNICYHH3fTHRy1Zv2077mf0abbzKVeUzlu3Iak5aMetAzUEpqtwd7TRgURT4TjGMOC2GmV0yY3LMhojMmzc3VNkgRKqqndq4WSEmwa4vYtTW6cdPTLB73W4YhthsNlFKf+LZbCaFIk1h22boxzbZtSQk6I/dbtPHq2v0c2P2I2dWPjIMQ+bMmeM1VlxcLNnZ2SYjAACsKv+fv5SUNqnRTiPkjtaVBz3GMvV2CDJBqL08drE2XvPFXp+xb8u2BrXvgzWHfMba1KVJRnJnbf+y6gPaeGl1mTbe2t5KGz/hrNTGjzuPa+M66Qlp2viR2qPauM1kRWoTmyxVy7zGWI8CsYtLFQAAAAAAAAALo8AHAAAAAAAAWBgFPgAAAAAAAMDCKPA1w513TY52CgAAAAAAAIBXFPgAAAAAAAAAC6PABwAAAAAAAFhYQrQTsIqJd3r/mK4tyBKpYRjBDQDAcqqq66Kdgldm70d1TldQ47tcKqj+4fTovLlSXFws2dnZ0U4FAHyaf887PmMfz39B2zc3pbc2bhj8vz/QkpzfNS/aKfg04h8PauPfP/i+z1jh5yu0fY/WlgeSUsTcu2gq61EEjALfKY5kuyQn273GKqucYduvzdb0D2qbYXjd7o3Tqf+DOcGuH8flUjJ//rxm7Quxw6xQ4jI5f2yi769M6jA1td5/JuqcLqmpdUpigv6PBLP8lS5uck6bMdt3TY3+5z3B5NjMavaxWtwDAETfoN4dJC0tzWvsLzP+E9Z9by7/ssm2nMpeUlT+rfR4+Yi2b9cLzgt6/8vU20GPgci7+bWfaeN/u8d3seXQs+uC2nf+4FE+Y2k5reXfa/+h7e+wObTxtonp2nhpdZk2bqabo6s2vrdqn8/Y0brgilSxXNwDEDj+qw4AAAAAAACwMAp8AAAAAAAAgIVR4AMAAAAAAAAsjAIfAAAAAAAAYGEU+AAAAAAAAAAL4ym6AICYcdfdk33GzJ7ubPYEYxGRxx971M+MAAAA0JJcaVzuM5bXZ7i2b0K39qbj37vyl37nBDQHBT4gBk2aNCXaKbQ49cUhw6avEjldSh6dNzcCGUVetI9LV9wDAACR97f3d2jjI8/rGqFMWoa9Vfvc/05PSNO2/VvtwnCnEzW/vuosfQNtfEJQ+9YV94BYR4HvlOoap4jh9BpLsPv+g7/Oqb+kxOyKEl/h+u26fYuI2EyKESLR/6MdoedI1v/o1tZ5P5frKaU/b8zOKl9FMJthiM1miDK51MoexHntdJlcxmWiOVd5AQAQDS9c8TdxJLTyGtv1+Yagxv7i2Ffa+KC0s5tsa9+qg6SlpUhyWhtt37UfLDXd/zL1tmkbWM/CxV9o41++8HefsY5J+iudDtV8r41/t227z5itbWdJtiVp+1e5qrTx0mp9vLXd+89qvRPOSm28YTEPAEKBe/ABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgA2Ap9mbcdxIAAAAAgJaEAh8AAAAAIKJcJg9lAwD4hwIfAAAAAJ+qyyuinQIAADCREO0EAMCXOqfL7z42Q/8R3tpa/8dEZDz+2KPa+O8mTtLGk5PsoUwHAABAWttbed1+wlmp7ZdiT9HG2ye208b3Vu3TJ4awWKbe1sZfXrVdGz/3jA6hTAfwCwW+U1yuk19eYxL45eMmtQavBQyXS/lV2DD7oxjWM3/+vKjuf/KUe7Rx3WndnDvkOZ36nyk+sgEAaImOfrVTqoxkr7HiqhJtX19FiObGv6853GRbUp3DvX3vvi+1/c3+KIY13XjJGfoGl5gM8Ku/BbzvB9vP0MaP1RzTRG1S7arR9s9MztDGy+vKtXEAiDV8RBcAAAAAAACwMAp8AAAAAAAAgIVR4AMAAAAAAAAsjAIfAAAAAAAAYGEU+AAAAAAAAAALo8AHAAAAAAAAWFhCtBMAYD3KLKZrICIul76B3W74m5Kb06kf22bTj20EvmuEmc3km1Nd44xQJgAAINpSk9N8xloltpJkW5K2f2l1WVD7T7GnaOPHnceDil/Y90d+54Tw+8eIu/TxZoyxTL0dmmSARijwNYPSVCuUy6y3/8UEJSLq1C5r60x3AITco/PmauOTp9wToUwAAGg5ik7skkQj0WvsrNT+2r5bjn0d1L7PGXJek21pZzgk0ZktIiK/XTgnqPEBf834/kFt/MEO90coEwCwBj6iCwAAAAAAAFgYBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwMAp8QTKYQQAAAABABD3c77FopwAgxvAUXQDwU8Gtd2rjLzz3x4jkAQAAgJbrm5Jyn7HcrLQIZgIgFlDgA+A35VLetyslyqXEsBna/mZxH8O7Jdj1/XWcJoMn2vWX5R78vjrgfSO8bEbg5wUAALCWY9W+i1vJtQ6pdtVo+2cmZ2jjpdVl2vhx53FtPMWeElR/M//vvf8Jqj/Co0erbtFOAS0YBT43JUp8FC1c5r2fenJ+yDIpLi6W7OzskI0HAAAAa/u+9rA2nu3Ikmcrnw/pPlmTAgBgHdxBDgAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYRT4AAAAAAAAAAvjKboAEGKTJk3RxufPnxehTKzld3dM0sZtNiNCmQAAAFjb/Lve1sYnPX55hDKxlqdf3xTtFICAUeAD4DdfBari4mLJzs6WyVPuCWp8szJObZ3LZywxIbgLk51OpY13bJesjddpckNwXC4lTz05P9ppAACAGDCv4nGfseLiYlnbZa22f2l1mTbe2t5KG+/VOkcb33Lsa208NaGNNl6ye7s2vvRXb/qM2ft20PZF4Ea+9ge5/YZzop0G4BUFvmbQ/7kPAAAABG9Ax7PFYXN4je0/ujfC2QAAACvhHnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYRT4AMQV3QM4AAAAAACIRxT4AAAAAAAAAAvjKboAEGFTptzjM1ZZ7fQZy8joJGVlB2XBk/PDkRYAAABaiKde+dxn7Kb/d7bPWGWtU8qraiXNkRiOtAAEgQIfgJBzOvUfk7UZhn4Amz6eYNdffOx0Kv34ur6uwPs2h83k2AAAABA8h82hjbdNTNfGS6vLtPEjtUf8TcnDsbqKoOK7V+z1GfvBlnxt3/TZo7XxlqzHGR2inQIQMAp8p6S0TpTkZO//C3GsojbC2QAAAKCl+erQl5JoeF+PVrtqIpwNAACwEu7BBwAAAAAAAFgYBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwMAp8AAAAAAAAgIVR4AMAAAAAAAAsLCHaCQCIP4ZhmDTQhxPs+gZKme3fd8zp1Hd2ufRxuy24Y6updWnjiQm+B0iwGdq41dnM5hYAAKCZqlxV2nhptT7e2t4qlOk00c3RVRs/7627tfH3L3/AZ+yTfYXavh0LtmnjGwt8x7rkd5X9hfvkxeq/asewqhPVddFOAQgYBb5TampdYti8/+FtcJ0jAAAAwiyndU9JNpK9xr6u2BrhbAAAgJVQugIAAAAAAAAszK8C38yZM8UwDI+vvn37avssXrxY+vbtKw6HQ84++2xZvny5z7a33XabGIYhf/zjHz22FxYWyjnnnCM9e/aUF154wSNmGIY4HA7ZvXu3x/YxY8bIzTff7M/hAQCAMGD9gFDjnAIAAP6K9/WD31fwDRgwQEpKStxfH330kc+269atk7Fjx0pBQYFs3LhRxowZI2PGjJEtW7Y0afvmm2/K+vXrJTs7u0msoKBApk+fLgsXLpTZs2fL3r17PeKGYciMGTP8PRQAABAhrB8QapxTAADAX/G8fvC7wJeQkCCZmZnur44dO/ps+8QTT8ioUaNkypQp0q9fP5k1a5YMHjxYFixY4NFu//798rvf/U5effVVSUxMbDLO8ePHZfDgwTJo0CBp166dHDt2zCM+YcIEeeWVV7xOMgAAiD7WDwg1zikAAOCveF4/+F3g2759u2RnZ0uvXr1k3LhxsmfPHp9tCwsLZcSIER7bRo4cKYWFp5/q43K55MYbb5QpU6bIgAEDvI4zY8YM6devn6Snp8uFF14o/fv394gPHTpULr/8cpk6daq/hwMAACKA9QNCjXMKAAD4K57XD349RTcvL09efvll6dOnj5SUlMgDDzwgF198sWzZskVSU1ObtC8tLZWMjAyPbRkZGVJaWup+/cgjj0hCQoLccccdPvdbUFAgN9xwg9TU1Ei7du28tpk9e7YMHDhQPvzwQ7n44ov9OSwgKu6eNMW0zWPz50UgE/9NnnKP1+2dOnaUg4cORTgbALGO9QNCjXMKCI35U3zfS6repHmXRSAT/11pXO4zljO0VwQzAWAV8b5+8KvAN3r0aPe/Bw4cKHl5edKjRw9ZtGiRFBQU+L3zzz77TJ544gn5/PPPxTAMbduUlBRJSUnxGe/fv7+MHz9epk6dKmvXrvU7l44dOojD4fAaq3O6TPsXFxf7vU9fDh8+HLKx0FSszG+nTr4vBa4XyvMqlDr5uIw5La3pm6I3LqW0cZO3A7Hb9Bcfu1y+x7fZTAYXkXHjxpm2CdQLL/1VG9ell5qWKi6lYva8CNa999xt2iacxx4r7w1W0/gjBt7E8/oB0RGv51T78zuKI8H7ejSnqsa0f6jfI3lfDJ9Ymds2HfVrMpHYXY/qinid+2RI28R0bf9KZ6U2Xu3S/8x1SPT+R3q9NFdbk/1XaeObH1wg9y7yfTXPqF2BXwjwyHVztPEf/P4mn7EEV6X0tbWK2fMiWBflJJu2YT0amyor9T/TIvG7fqjnV4GvsbZt20pubq7s2LHDazwzM1PKyso8tpWVlUlmZqaIiHz44Ydy4MAB6d69uzvudDpl0qRJ8sc//lF27drlVz4PPPCA5ObmytKlS/3qJyJSUnpAkpK9/zAn2M0/yeztRorBCPV48BQL83vwoPmVbrGQpze6q/SacwWfrgAnYl7gS0zQ/0w6ncEV+MI572VlB7Vxk9qllB04GLPnRTxgbv1XXl7ud594Wj8gNsTLObVuzTpJlKb37hERyXZkmfYPx3sY74vhEwtzW3Fok2mbWMjTm6K132rjlRuOa+PldfrfXydMCoC1Dv28HDUZ/1hdhTYuEr65N5u7QXb9f9pX21Nj9ryIB8xtYFiTBnAPvoYqKipk586dkpXlfcGRn58vq1at8ti2cuVKyc/PFxGRG2+8Ub744gvZtGmT+ys7O1umTJki//73v/3Op1u3bjJhwgS57777xOl0+n9AAAAg7Fg/INQ4pwAAgL/ibf3gV4Fv8uTJsmbNGtm1a5esW7dOrr76arHb7TJ27FgRERk/frxMmzbN3X7ixImyYsUKmT9/vmzdulVmzpwpGzZskAkTJoiISIcOHeSss87y+EpMTJTMzEzp06eP3wcjIjJt2jQpLi6W//znPwH1BwAAocX6AaHGOQUAAPwV7+sHvwp8+/btk7Fjx0qfPn3kuuuukw4dOsj69eulU6dOIiKyZ88eKSkpcbcfMmSILFy4UJ577jkZNGiQLFmyRJYuXSpnnXWW34k2V/v27eXee++Vqir9PQ0AAEBksH5AqHFOAQAAf8X7+sFQyuRu93GuvLxc0tPT5de33R7UPfhC+bTT4uJiPncfRrEyvy35Kbqxfg++Rx55xLRNoCbcMUkb192DL6NzJyk7cFCe/OP8EGcFkdh5b7Ca+t+jR48elbS0tGinA1hS/c/RKPlJUPfge7by+ZDmxfti+MTK3MbzU3TDfQ++rhG4B98y9bZpm0Do5k5EZMy7j/mMJTuPSbU9VX7149xQpwWJnfcGK2JNGuQ9+AAAAAAAAABEFwU+AAAAAAAAwMISop0A0FLF6sdvm8PXR2xdSpl+/FZExG7yMVmzj9Ga7cOpiTtdKqpzv+DJwD9eyyX7AAAglGL147fNkZHc2WesbWK6FFV/G9T4Zh+L31dVrI2nJrQxjb9a+7rfeYVCMB/9ZT0KxC4KfKfU1CkRm/eigN3HdgAAACBU8n4wWhwJrbzG1q37Z4SzAQAAVsJHdAEAAAAAAAALo8AHAAAAAAAAWBgFPgAAAAAAAMDCKPABAAAAAAAAFkaBDwAAAAAAALAwnqIbJnfdPdn9b8MwtG0fmz8v3OkAiBN3T5oS9Bi85wBAy3Clcblf7Zept8OUCYB4YvbekmxLMh1jsfMfoUoHwCkU+EKkYUEPiHcJdu9Fa7vNkAS7IU6nCuv+lcnwJjV1mTR5isx/lCIXACC++FvQA+JZZnKGNl5aXaaNF1eVaOMp9hRt/FhdhTYOAKFGge+Ujm2TJTk52Wvs2PFabV+zYgIAAABg5tjXRVJjeF+PXpCVp+37acnH4UgJiFnPV70otzh+Fe00ACBmcA8+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAAAAAICF8ZANAIDbpMlTtHGePgwAAIBwmn3eAtM20z6bEIFMAGuhwAcEaOKdk03bPPHHRyOQCeDbY/MpyAEAEK9+1/o3pm2eOvFMBDIB9BY7/xHtFIC4R4HvlN9PnylpaWkB9b3jzknauJ0PQiPOOJ3K63aXS/mMefR3mbcJpr/NZgQ1fiyjYAcA8ev+/bMCXo+OTbheG7cZ8fu7ES1XWfUBr9tb17aR0uoybd/W9lba+AlnpTZ+3HlcG09NaKONW9ky9Xa0UwDgBaUnAAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAAAAAICFUeADAAAAAAAALIwCHwAAAAAAAGBhCdFOAAiXiXdO9rq9c+dOcuDAQTEMfX+bzaRBHLvnnnuinULYTZo8JaB+Spm3eWz+vIDGjgXzH7Vu7gAAxKI93x1vsu1IRbXUndqenpLks+9zN/09bHlZwc/s10Q7hbC60rjcZ+zC/pdq+67/epXp+MvU237nFAumfTYh2ikAlkSBLwRsJpUiw6ySBEuyteDrX+127+e0zWaI3W6YnvNm8do6Z8C5iYio5lThAABoQe7874Jop4Aw2F25N9opRJXD5vC6PclI9Bmrd8JZqY13dWRr40fryrXxY3UV2jgAhFoLLlHEjrsnBXYlEQAAAAAAAECBDwAAAAAAALAwCnwAAAAAEINu/b9ro50CAMAiKPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhSVEOwGE1x13TjJt8+Qf50cgk5bprrsn+4zVOZW2b1KCvv5u2AxtvK7O5TNmM+mbYNfH45VhGGJ25C6l/74BAICmrjQu18aXqbcjlEnLYzb3Ouenn6uNbyz/Qht3Kqc23impo985tRQTPpugjSdPOzNCmQCwCgp8IfDHxx+NdgrwwunyXohxKSVOl5I2rfWnf02t7wKZiIjN0JeCrFwIcpoUH33NTU2tSyqrnJKcbNf2r6vTL/ZMptZ07sVk6s2KowAAWM1rdW9EOwX4sPDKV5psS+vrkPKtVSIikviT3tr+m/6xNBxpWULPVj208d2VewMeu7W9lTa+r6o44LFFRLo5umrje6v2BTU+ADTGR3QBAAAAAAAAC6PABwAAAAAAAFgYBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwMAp8AAAAAAAAgIUlRDsBtGyTJk3RxmvqXD5jNsMIdTqIUU2+1ybfeiOIc6PO6fucExGx2TjvAACIJ1cal2vjre2ttPETzkptfMiQK/zOCbEnxZ7i8fq487i2/d6qfdp4ekKaNv78k+u08TY/7KmNA2h5KPAhbvkqwxinviqrnEGN70i2a+PVNfrxzWpQtSaFJnGKPPnH+fo2EVZcXCzZ2dmmhVu73eTgVQiTAgAAiGHVi77UxtsntvMZO1ZXoe2b06qHNm72n6Lf1x7Wxnu06iZ/PL5A2yYaiouL5bYutwY1RuOCHgDEOj6iC8tyKapAAAAAAAAAFPgAoAG7nbdFAAAAAIC18JcsAAAAACCuLFNvRzsFAIgoCnwAAAAAosrsQRcAAECPAh8AAAAAAABgYTxFFwCAFu53EycF3LemujqEmQAAAKAlMruSe/SS2dp4kq02lOlYEgU+ACFn9nxjm2Fo42ZPSNb3FlFBPmHZZvO9h5paV1BjAwAAIDKyHVk+Y0dqj2j7Hnce18YHpg7QxndX7tXGj9aVa+PtzvGdu4jI4NyO2jiAlocCX5wLss4RdieqnNq4zeRD5C5R8vRTj/m1z+LiYsnOzjZtN3Xqvdp4UqI+uZpa/bEZyqxMJfLEHx81bQMAAIDwOeGsNG3j7wMdmrseFRGZnj7NZ6znb67Q9l3z2J+08QvP/rHp/u/7YqJpGwBA9HEPPgAAAAAAAMDCKPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAAAs69iJmminEHUJ0U4A0Tfxzsk+Yy6X0vY1TErELlcgGcHqEuyGNu40Oa9MmXXX715shr6BXZO/0xlk7kAMeuqJ+dr47+6YFKFMALRkVxqXe91uN+zafh2TOmjjZdUHAs4J1lZcVeIzlmJP0fbt6sjWxosqd2vjx+oqtPG2iena+OFvv9PGD2Xo8wesZpl6Wxt/5u9fauOprZNCmY4lUeCLc4kJ+gpctIsVjmTzi0gff+zRCGTSVG2dvjpZW+eS+Y/Oi1A2AAAA1nV+u8Ha+IbDn0cok6YcNodpm0XOJRHIxLu2d1+qjU+6f4Tv2PzLQp0OACBG8RFdAAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAABgUfMf+E+0UwAAxAAKfAAAAAAAAICFUeADAAAAAAAALCwh2gkAiD8uFVx/u83Qxs2GVyYJJCbp/2/DMHzv35FssnMgDj315HyfsfLycnnuz09HMBsAAJrnh+Nv9hn74K8va/sedx7XxgemDtDGvzj2lTZ+pPaoNl750Hva+KGFY7VxIN785tqztfHy8nL5nwjlEqso8MW52jqXvoFJpcRmUmhJSjS/CHTevLmmbWLR/EfnRTsFAACAuJA8OEcbt7+32WfMqZxB7TsjubM8X/ViUGNE06T7R0Q7BQCABfARXQAAAAAAAMDCKPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMp+gCQIhNmjTFZyw52a7tW1vr+8nXHTt2lH37y7T9U9sk6pNrhocfnhP0GAAAAIiuede/7jO2fvEb2r61qtbr9pyhvaTD1221fTcc/lwbv+WTP2njIiJXXNDdtA0ATxT4AITco/PmauOTp9yjjTtdShu32Yyg4oahj1dV12njWvrUAQAAECGT/+//+Yx9u+hdbd+jdeXa+BfHvtLG0xPStHGz9egn+wr18R/q4xdf9wttHED8ocAX5xIT9J/Cdjr11QiX0serapzy1BPz/c4LAAAALcfaVX8PuG+npI7auEu55IXqlwMeHwCAeMA9+AAAAAAAAAALo8AHAAAAAAAAWJhfBb6ZM2eKYRgeX3379tX2Wbx4sfTt21ccDoecffbZsnz58iZj9u3bV1JSUqRdu3YyYsQI+fjjjz3aFBYWyjnnnCM9e/aUF154wSNmGIY4HA7ZvXu3x/YxY8bIzTff7M/hAQCAMGD9gFDjnAIAAP6K9/WD31fwDRgwQEpKStxfH330kc+269atk7Fjx0pBQYFs3LhRxowZI2PGjJEtW7a42+Tm5sqCBQvkyy+/lI8++kh69uwpP/nJT+TgwYPuNgUFBTJ9+nRZuHChzJ49W/bu3euxH8MwZMaMGf4eCgAAiBDWDwg1zikAAOCveF4/+F3gS0hIkMzMTPdXx46+b3r7xBNPyKhRo2TKlCnSr18/mTVrlgwePFgWLFjgbvPzn/9cRowYIb169ZIBAwbIY489JuXl5fLFF1+42xw/flwGDx4sgwYNknbt2smxY8c89jNhwgR55ZVXPCYZAADEDtYPCDXOqZbjYM2haKeAOPSnyueinQKAKIjn9YPfBb7t27dLdna29OrVS8aNGyd79uzx2bawsFBGjBjhsW3kyJFSWOj9kd41NTXy3HPPSXp6ugwaNMi9fcaMGdKvXz9JT0+XCy+8UPr37+/Rb+jQoXL55ZfL1KlT/T0cAAAQAawfEGqcUwAAwF/xvH5I8KdxXl6evPzyy9KnTx8pKSmRBx54QC6++GLZsmWLpKamNmlfWloqGRkZHtsyMjKktLTUY9vbb78tN9xwg5w4cUKysrJk5cqVHlXUgoICueGGG6SmpkbatWvnNbfZs2fLwIED5cMPP5SLL77Yn8MCEGGPzpurjU+aPEUbN0zGr61zaeMul9LG9VGR5CS7774mnZ1OfQObzZBHHnnEa6y4uFiys7NNsgNiD+sHhBrnFIBQ0F3Fd3ur27R9j9VVBLXvI7VHtfGcVj20ccPQr4jXLX5NGz83baA2LiIy48isJttYj8LK4n394FeBb/To0e5/Dxw4UPLy8qRHjx6yaNEiKSgoCCgBEZHhw4fLpk2b5NChQ/L888/LddddJx9//LF07tzZ3SYlJUVSUlJ8jtG/f38ZP368TJ06VdauXet3DiUlJVJREdybdKgcPnw4ZGN16NBBG7fb9b8YzIoRIiff5K0klPMLT6Ga206dfF8mLSJimJT4nCYFPJtJhdDsrE9M8H3xs1mBrzl8/Uxx7oYX8xuYxh8x8Cae1w+Ijng9p2JpPSoS2vfFQcP0xYQ2dt9zKiJSXF2mj7MeRQOhmN/MC7O08YTaJG28tb2VNt7eWamNd07qpI2b1PfEqNH/qd+2VXv9AOL954pzN7yY38BVVup/pkTid/1Qz68CX2Nt27aV3Nxc2bFjh9d4ZmamlJV5/jIuKyuTzMxMj20pKSlyxhlnyBlnnCEXXnihnHnmmfLCCy/ItGnT/MrngQcekNzcXFm6dKlf/UREsrKyJC0tze9+4RKq/xUpO3BQG9cVKkTMr4QSCV2ukWTFnK0iFHN78KD+Xjs2kxWN2XlrN6nwhfMKPtWMCqBuDjl3w4v59V95ebnffeJp/YDYEC/nVKytR0VC9764v3CfNt4+0fsVDfWKjn+rjVvx/duKOVtJsPNbur5EG99bpT+n0xP0P8tH60x+f7ZyasNmV/DtrtyrjbdLa3q1UmO+5pBzN7yY38CwJg3gHnwNVVRUyM6dOyUry/v/buTn58uqVas8tq1cuVLy8/O147pcLqmurvY7n27dusmECRPkvvvuE6dT/4YIAACig/UDQo1zCgAA+Cve1g9+FfgmT54sa9askV27dsm6devk6quvFrvdLmPHjhURkfHjx3tUKCdOnCgrVqyQ+fPny9atW2XmzJmyYcMGmTBhgoicfJLIfffdJ+vXr5fdu3fLZ599Jr/61a9k//798rOf/czvgxERmTZtmhQXF8t//vOfgPoDAIDQYv2AUOOcAgAA/or39YNfBb59+/bJ2LFjpU+fPnLddddJhw4dZP369dKp08n7A+zZs0dKSk5fyjxkyBBZuHChPPfcczJo0CBZsmSJLF26VM466ywREbHb7bJ161a59tprJTc3V6644gr57rvv5MMPP5QBAwb4fTAiIu3bt5d7771XqqqqAuoPAABCi/UDQo1zCgAA+Cve1w+Gas4NoeJYeXm5pKeny9GjR2PmniehfDLRHXdO0sZDcQ++J/8436+coo0nP4VPqObW7Cm68X4PPp6iGx3Mb2Bi8fcoYDWx+nMUyvfFXyWP18bN7sH3zfGd2vgy9bbfOUUTv3PCKxTza/YU3XDfgy/Yp+ia3YOPp+jGJuY3cLH6uzSSgroHHwAAAAAAAIDoCuopumg5DDF5DjsQQq0d+remE5V1QY1vt+vPZ5vZFX6aq/BcLvMr9ObOnWvaBgAANNUn5cxop4AWwuwKvdSENtp428R0bdzsCr6iyt3auNlVr2Y2ln8hb7reCmoMALGFAl+cC/bjsxPvnByiTAAAANBSvVj916D6T2lzV4gyAQAgPvERXQAAAAAAAMDCKPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMp+giaHfe5ftJu3abYdp//vx5oUwHAAAALcy9qXf7jP234hvT/svU26FMBwCAiKPABy2byTWeSkUmD7QsZueV2WnnSNa/tTmdLm3cMPSFaaVJ0GYzZM6cR7T9AQCAf7Yd3+4z1q9NbgQzQUuRmtBGG2+b0FYb3125V98/MV0bt5l82O772sPauAiFa6Cl4SO6AAAAAAAAgIVR4AMAAAAAAAAsjAIfAAAAAAAAYGEU+AAAAAAAAAALo8AHAAAAAAAAWBhP0QUAWMKUKfeYtpk3b24EMgnML345URs/s0drn7GO6eaPLL/9rjl+59Rcv5s4yWespro6bPsFAACINQcrzNc+ndokRyAT//3lna3a+NlndNDGWzvMS0hnd2vnV07NdaVxuTbe+czOYdmvlVDgA+DVtGlTfcZqapxet3fq1FEOHjwkLqUvRiQn6d96EuyGeYIAAACIa/NvX6ZvkO69iNKmg0sqvvtStj++RNs95+KhgaYGADGHAh+0DMOs0KIv5JhfcwI05XTpz5yUVvq3rto6lzZeXeu9QNnceFKiXRsHAAChlWgk+oz9t+IbbV+HzRHqdNACHKur0MZtQd7t6kjt0aD6d0xqH1R/APGHe/ABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYTxFFwCAELj5f+4M29iHjhrSMV3/dOmJd072GbPbzZ6ILvLY/Hl+5wUAAIDY8f6WkminIPPnrvEZW3Ov+XpzmXo7lOm0KBT4ACDEJk+5Rx6dNzfaacSdxERrX3TepbNDGz923KmNO512n7Gjx2oDyqm5nnpivs9YeXm5PPfnp8O6fwDQSTQSpVaF930QAOrdkvoz0zZL1bIIZOK/42UV2viXJv0drRK18bJP9vmZUfOZFf7Ky8vlhfSXwrZ/K6DAh6A4XforSmzmF40gRs2ePcfvPsXFxZKdnW3abtKkKdp4YqLvQoaISG2d/ryrrNIXSgzRn5itHPr92zixAQCIKf3a5PqM/bfimwhmglCa9PSVAfVzr0kfHqltNyvzQZ+xCzJ+IKVHi33G91YFV8jIadVDGy+q3K2NH6r5Pqj9A4g/1r4cAgAAAAAAAGjhKPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYQnRTgDRNfHOydq43W5EKBNE2qRJU0zbzJ8/LwKZAM3jSIrt96MObRO1cadLaeN2m/74KqucPmNK9GO7XNowAETdtbaro50CouBoVa1pm3SH/vcrEGmPlr4a7RR8WvfzRdq4rW1rbfzEsSpt3N6lrTbeYcIF2vjvt7+kjSM4FPig5XTq/2hMsOsvAnWZ/EELeON06qsRZoWSpET9eVlnMn6dyXkvZnEAABBStUpfCPr2xC6fsSE/+GmIs0G8+PrQV9r4cedxn7Eerbpp+x6tK9fGiyp3a+M2kw/btU9qq40DaHn4iC4AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsLCEaCcQK8rL9Y8xj6S6urqI5XP2WQO08V27dkvPnj18xnfv2S05PXv6jBft2iU9evjuLxL5uY/k/MayAQP033sR/783zZ1bs33v2aM/74p27ZYe3X3Hzfp/W+T7vPzZ/7tWm1tzheMca+nn7p13TzNtE8z8BDu/98+YHnDfWBDosbfkcxIItVj7eYrk7538n+dr4/8t/K/k5vfxGd+xfrv0ze/rNVZVfFxyL/Qeq8d6NDoqa+tM2xg1/v/J2tz5/cHP87Txr9ZukTPzc73GDmwolb75/Xz2/W/h19Izr5fP+Jdrv5AzLjzTZ/w3f/qtNrfmYD0aHp1bmbcJdI6Cnd8JH/0y4L6xgjVp4AyllIp2EtFUVVUlOTk5UlpaGu1UAACwpMzMTCkqKhKHwxHtVABLYj0KAEDwWvqatMUX+EROLqpqamqinQYAAJaUlJTUYhdSQKiwHgUAIDgtfU1KgQ8AAAAAAACwMB6yAQAAAAAAAFgYBT4AAAAAAADAwijwAQAAAAAAABZGgQ8AAAAAAACwMAp8AAAAAAAAgIVR4DMxc+ZMMQzD46tv377u+K9//Wvp3bu3tGrVSjp16iRXXXWVbN26VTumUkpmzJghWVlZ0qpVKxkxYoRs3769Sbt//etfkpeXJ61atZJ27drJmDFjPOLLli2T3Nxc6dOnj7z99tvu7VlZWTJnzhyPtlOnThXDMOT999/32H7JJZfIjTfe2MzZCL1ozW/Pnj2b7LfxnD3//PPSo0cPOffcc+Xjjz8WEZGKigpJTEyU119/3aPtDTfcIIZhyK5du5rsZ/r06f5OS0hE89wVEamurpZzzjlHDMOQTZs2ecSsPrci0ZvfK6+8Urp37y4Oh0OysrLkxhtvlOLiYo82zK93ZvO7a9cuKSgokJycHGnVqpX07t1b7r//fqmpqfEYJx7mF4D1sCYNH9aj4cWaNHxYj4YX61FYjoLW/fffrwYMGKBKSkrcXwcPHnTH//znP6s1a9aooqIi9dlnn6krrrhCdevWTdXV1fkcc86cOSo9PV0tXbpUbd68WV155ZUqJydHVVZWutssWbJEtWvXTj3zzDNq27Zt6quvvlJvvPGGO15VVaW6du2qVq5cqd59913VtWtXVV1drZRS6oYbblAjR4702OcPfvAD1a1bN3X//fe7t1VWVqrk5GT14osvBjtNAYvW/Pbo0UM9+OCDHvutqKhwx3fv3q3OOOMMtW7dOrV48WLVr18/d+zCCy9Uv/71rz32mZGRobp166Zeeukl97Zvv/1WiYh67733gpmigEVrbuvdcccdavTo0UpE1MaNG93b42FulYre/D722GOqsLBQ7dq1S61du1bl5+er/Px8d5z5DXx+33nnHXXzzTerf//732rnzp3qrbfeUp07d1aTJk1yjxEv8wvAeliThg/r0fBiTRo+rEfDi/UorIYCn4n7779fDRo0qNntN2/erERE7dixw2vc5XKpzMxMNW/ePPe2I0eOqOTkZPXaa68ppZSqra1VXbp0UX/5y1987ufo0aOqR48e6uDBg+rgwYOqZ8+eqry8XCl18o2mTZs2qra2VimlVHl5uUpMTFQLFixQw4YNc4/x3nvvKRFRRUVFzT6+UIvG/Cp1ckH1+OOP+9zPl19+qc4//3xVUVGhvv32W9WzZ093bNq0aapPnz7u119//bVKT09XDz/8sLrpppvc21988UWVnJzsdaERCdGaW6WUWr58uerbt6/66quvmiym4mFulYru/Db01ltvKcMwVE1NjVKK+Q31/M6dO1fl5OS4X8fL/AKwHtak4cN6NLxYk4ZPrKyXWI+exHoU0cZHdJth+/btkp2dLb169ZJx48bJnj17vLY7fvy4vPTSS5KTkyPdunXz2qaoqEhKS0tlxIgR7m3p6emSl5cnhYWFIiLy+eefy/79+8Vms8m5554rWVlZMnr0aNmyZYu7T1pamvzyl7+UrKwsyc7Olt/85jeSmpoqIiLDhw+XiooK+fTTT0VE5MMPP5Tc3Fy59tpr5eOPP5aqqioREVm9erX07NlTevbsGfQcBSPS81tvzpw50qFDBzn33HNl3rx5UldX546dddZZMnDgQElPT5cBAwbIH/7wB3ds+PDhsm3bNikpKRGRk/N40UUXyY9+9COPj5usXr1a8vPzxeFw+D0noRKNuS0rK5NbbrlF/va3v0nr1q2bjBMvcysSvXO33vfffy+vvvqqDBkyRBITE0WE+Q3l/IqIHD16VNq3b+9+HU/zC8B6WJOGD+vR8GJNGj7RXi+xHj2J9ShiQrQrjLFu+fLlatGiRWrz5s1qxYoVKj8/X3Xv3t39P5NKKfX000+rlJQUJSKqT58+Piv2Sim1du1aJSKquLjYY/vPfvYzdd111ymllHrttdeUiKju3burJUuWqA0bNqixY8eqDh06qO+++86j35EjRzxyqdelSxf18MMPK6WUmjJlivrtb3+rlFIqNzfXfRnuxRdfrH75y18GMCuhE435VUqp+fPnq9WrV6vNmzerZ555RrVt21bdddddTcY7dOiQOnHihMe248ePq6SkJLVw4UL32HPnzlW1tbUqJSVFffvtt0oppbp3764eeOAB/yclRKIxty6XS40aNUrNmjVLKaVUUVFRk/8trWfluVUqeueuUkrdc889qnXr1kpE1IUXXqgOHTrUZDzm15M/81tv+/btKi0tTT333HNNYlafXwDWw5o0fFiPhhdr0vBhPRperEdhNRT4/HT48GGVlpbm8VGFI0eOqG+++UatWbNGXXHFFWrw4ME+L3Vtzg/1q6++qkRE/fnPf3bHq6qqVMeOHdWzzz7brDzHjRunfvKTnyillLrgggvUokWLlFJK3XLLLWrGjBnqxIkTKikpSf31r39t/sFHQCTm15sXXnhBJSQkqKqqqmblOXToUHXrrbcqpZTq3Lmz+uSTT5RSSv34xz9WL774otq5c6cSEfXBBx80a7xIiMTcPvHEE2ro0KHu+07oFlO+WHFulYrsuXvw4EG1bds29e6776qhQ4eqyy67TLlcrmblyfw2771h3759qnfv3qqgoMCvPK06vwCshzVp+LAeDS/WpOHDejS8WI8i1vERXT+1bdtWcnNzZceOHe5t6enpcuaZZ8oPf/hDWbJkiWzdulXefPNNr/0zMzNF5OQl4w2VlZW5Y1lZWSIi0r9/f3c8OTlZevXq5fOS4MaGDx8ua9eule+++042btwow4YNExGRYcOGyerVq2XdunVSU1MjP/rRj5p55JERifn1Ji8vT+rq6po8WciX4cOHy+rVq+Wrr76SyspKGTx4sIicnt/Vq1dL69atJS8vr1njRUIk5va9996TwsJCSU5OloSEBDnjjDNEROT888+Xm266qVl5WnFuRSJ77nbs2FFyc3Plxz/+sbz++uuyfPlyWb9+fbPyZH7N57e4uFiGDx8uQ4YMkeeee86vPK06vwCshzVp+LAeDS/WpOHDejS8WI8i1lHg81NFRYXs3LnTveBpTJ28KlKqq6u9xnNyciQzM1NWrVrl3lZeXi4ff/yx5Ofni4jIeeedJ8nJybJt2zZ3m9raWtm1a5f06NGjWXkOHz5cjh8/Lo899piceeaZ0rlzZxER+eEPfyiffPKJvPPOO3LmmWdKly5dmjVepERifr3ZtGmT2Gw29zyZGT58uGzfvl0WLlwoF110kdjtdhE5Ob9r1qyR999/X4YOHSpJSUnNGi8SIjG3Tz75pGzevFk2bdokmzZtkuXLl4uIyBtvvCEPPfRQs/K04tyKRO/cdblcIiI+x22M+dXP7/79++WSSy6R8847T1566SWx2fz7NWnV+QVgPaxJw4f1aHixJg0f1qPhxXoUMS+yFwxaz6RJk9T777+vioqK1Nq1a9WIESNUx44d1YEDB9TOnTvVww8/rDZs2KB2796t1q5dq6644grVvn17VVZW5h6jT58+6h//+If79Zw5c1Tbtm3VW2+9pb744gt11VVXNXn0+MSJE1WXLl3Uv//9b7V161ZVUFCgOnfurL7//vtm5969e3eVmpqqbrvtNo/tOTk5KjU11X3ZbjRFY37XrVunHn/8cbVp0ya1c+dO9corr6hOnTqp8ePHNzvvyspKlZycrFJTU9WcOXPc26uqqpTD4VCpqanu+81ES7TO3YYC+TiEFeZWqejM7/r169VTTz2lNm7cqHbt2qVWrVqlhgwZonr37t3sj/Mwv77nd9++feqMM85Ql156qdq3b58qKSlxfzWXVeYXgPWwJg0f1qPhxZo0fFiPhhfrUVgNBT4T119/vcrKylJJSUmqS5cu6vrrr3ffOHP//v1q9OjRqnPnzioxMVF17dpV/fznP1dbt271GENE1EsvveR+7XK51PTp01VGRoZKTk5Wl156qdq2bZtHn5qaGjVp0iTVuXNnlZqaqkaMGKG2bNniV+433XSTEhH1+uuve2y/+eablYhoH8UdKdGY388++0zl5eWp9PR05XA4VL9+/dTDDz/c7F9I9YYNG6ZERK1fv95j+yWXXKJERBUWFvo5G6EVrXO3oUAWU0rF/twqFZ35/eKLL9Tw4cNV+/btVXJysurZs6e67bbb1L59+/zKnfn1Pr8vvfSSEhGvX/6wwvwCsB7WpOHDejS8WJOGD+vR8GI9CqsxlFIqHFcGAgAAAAAAAAg/7sEHAAAAAAAAWBgFPgAAAAAAAMDCKPABAAAAAAAAFkaBDwAAAAAAALAwCnwAAAAAAACAhVHgAwAAAAAAACyMAh8AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAAAAAICFUeADAAAAAAAALCwh2gkg+qqqqqSmpibaaQCAZSUlJYnD4Yh2GgBgaaxJASA4rElbNgp8LVxVVZW0atNWxFkd7VQAwLIyMzOlqKiIBRUABKiqqkpycnKktLQ02qkAgGWxJm3ZKPC1cDU1NSeLe91/LGJPFDFscvKT28bJBobt1Nep13Lq34ZN89rmJV7f3zg1tOF+mWCI2EWJyKl/GyJ2Od3lZEZKbPWvjVNf9SMaJ2PuPZzane30Lpr12jBUo9cNxmuw3Wsbs9eGZ39p9Lpx/PRrw+OYGh5jw/34GkMa9zGMJvN0+rXh+a1ytzF8HJPRJB8Rw3ubRq894g0auHPytc/6uWs8j437e+xDNZm75nyvpOE+DBHj1Dnqtb80OH+8fK/cOXjsUzWYFx9juNs36m+oRufjqZ+BRv3FS85Nx2jYRpnH5XRcDOXxc9ikv0dOyn0cnu1P/2yfPEdVg5/Fxjmc7iMiYmv0unHcEJeXuIhhuDzbi6vBePV96tu4xHZqW/1rw2PyDSk/7pLugzdKTU0NiykACFBNTY2UlpbKN0W7JS0tVURElDr5m0wpkfrfafXbTm10x1X9QEpJg+ai5GRQnQ6f3OqO+zN+o20ebU6PKaf+rRqOqURcquE+GuTgbi8e7VWj9qcPUTWYm4b7aHhcyj2Ou0+T9iKu0xPlJedG89Rk3pSX8XXz0vi4Pb93ynXqe9Wggarf3mBe3d+bkwfgcUwn25xqXx9rlOfJmNmY4nNMz4lt9LpxvP61q9E3uPHrxidAk/bi5bXyfC1KG1eN2zfcp8szB9U4p/p8Gs6fx/dKGu2zfo4bnF/1+2gYbzCech93w300nHv3D9Lp741LeXwv3ePUt5cG7V1KRLn07b2cg+JSDX4uXOISJUqdXCe6RIlLuUSdWku6lBIlLvcuXOI69bPRKH5qvJN9T45xclpc4lLKHVfu8byMcSrHUxmJS1xSJ3Xyn9L3WJO2YBT4cJItQcR2qsBnmBX4vBXwzAp87jKAR/XkdDFENXotngU9Pwp8tlNjnC7gqUavG8dPFy+8xo2GbRr3aebrJkWn5r5uWriqf+29SGh4vm7SJwwFPo/jjmyBTzdPwRb4PIqI3s7RJu2bnsOnX3sv8JmO0egcblo8Ox33VuDzzNlXkbBpm2bHQ17ga1yg8zJGAAU+W5O4y+trfYGv/rXh/llyT0z9AQAAgpaWlhaSAl/DQlfICnyNt/koZJ0uwDUYUzWnwOfZvnGBr2n7Rm08CnL+FfhO13N8jWfyusG8+56Xxsdxup+IeC/wKQl9gS/IMZtV0Gv82qzAZ/r6dI6BvvarwNfotXmBr/E+G4x56nVABb6GBTjjVMxo8L0yTr+ujzVpX39On0xCTh/kyZi7/akytih1+vyQU2PWF+QalNNOvq4v151+7VHAa7ClOfHTo9W/Vl732WQMdboPWjYesgEAAAAAAABYGAU+AAAAAAAAwMIo8AEAAAAAAAAWRoEPAAAAAAAAsDAKfAAAAAAAAICF8RRdnOSqO/WYTJucrPvWPyHS21N069v5eu3tKboNH0kq7vGVceqr/ulG7tciLo8HU6oGjyU9nZ7IqSdsNnhqqTq1O9XoKalmrxs/Rbd+/+4nnIrmyatmr709mVV8x5v1FN3GOXkZQxr3CcdTdBseV4SfouuexyZPZW64j8CeotvwfNM+Rdc9RqO4x/68P0VXGu3Tr6foimfc21N0xUvOQT9FV07HJeRP0RWRxk/RlUZjBPAUXc+4SJOn6EpznqKr3K8bP0W3/DhPLQOAUCkvLxf3Uy89Htzpuc3sKbruB2WG8im60mibj6fFup/+6vdTdMWjfeOn6J4+xNA/RVeUeMm50Tw1mTf/nqIrTY7b83vn9Sm69dsbzGvQT9EVOfmEVu2Y4nNMz4lt9DrQp+g2PgG8PkW38Wvl+VqUNu7XU3Qb52T6FF1ptM/6OW5wfgXyFF2PuXf/IJ3+3riUx/fS46m79fuvb+9SIsqlb+/t6cDq9FN0lTr1RFvV4Cm6qsFTdNWpJ9y6v/2uUz8bjeL1T8BVp56Jqxo8RVepBk+3Vu5tTfehTu/j1Kh1Uido2SjwtXBJSUmSmZkppXtWRi2HulNfIiLVUcsCAAKXmZkpSUlJ0U4DACxLKSVt2rSR3Jwe0U4FACyrTZs2pwuUaHEo8LVwDodDioqKpKamJtqpSHl5uXTr1k327t0raWlp0U7Hcpi/4DB/wWnp85eUlCQOhyPaaQCAZRmGIRUVFS3290hDLf13amPMx2nMhSfmw1P9fNR/GgotDwU+iMPhiKk/TNPS0niDDgLzFxzmLzjMHwAgGPweOY258MR8nMZceGI+gJN4yAYAAAAAAABgYRT4AAAAAAAAAAujwIeYkZycLPfff78kJydHOxVLYv6Cw/wFh/kDAASD3yOnMReemI/TmAtPzIcn5gOG4hErAAAAAAAAgGVxBR8AAAAAAABgYRT4AAAAAAAAAAujwAcAAAAAAABYGAU+AAAAAAAAwMIo8CEmPP3009KzZ09xOBySl5cnn3zySbRTikmzZ8+WCy64QFJTU6Vz584yZswY2bZtm0ebqqoquf3226VDhw7Spk0bufbaa6WsrCxKGce2OXPmiGEYcuedd7q3MX/m9u/fL7/4xS+kQ4cO0qpVKzn77LNlw4YN7rhSSmbMmCFZWVnSqlUrGTFihGzfvj2KGQMAYllLXAeyptNjjcZ6q57T6ZTp06dLTk6OtGrVSnr37i2zZs2Shs8Kjee5+OCDD+SKK66Q7OxsMQxDli5d6hFvzrF///33Mm7cOElLS5O2bdtKQUGBVFRURPAoECkU+BB1b7zxhtx9991y//33y+effy6DBg2SkSNHyoEDB6KdWsxZs2aN3H777bJ+/XpZuXKl1NbWyk9+8hM5fvy4u81dd90l//znP2Xx4sWyZs0aKS4ulmuuuSaKWcemTz/9VP785z/LwIEDPbYzf3qHDx+WoUOHSmJiorzzzjvy9ddfy/z586Vdu3buNnPnzpUnn3xSnn32Wfn4448lJSVFRo4cKVVVVVHMHAAQi1rqOpA1nW+s0VhvNfTII4/IM888IwsWLJD//ve/8sgjj8jcuXPlqaeecreJ57k4fvy4DBo0SJ5++mmv8eYc+7hx4+Srr76SlStXyttvvy0ffPCB3HrrrZE6BESSAqLsBz/4gbr99tvdr51Op8rOzlazZ8+OYlbWcODAASUias2aNUoppY4cOaISExPV4sWL3W3++9//KhFRhYWF0Uoz5hw7dkydeeaZauXKlWrYsGFq4sSJSinmrznuvfdeddFFF/mMu1wulZmZqebNm+feduTIEZWcnKxee+21SKQIALAQ1oEnsaY7iTXaSay3TvvpT3+qfvWrX3lsu+aaa9S4ceOUUi1rLkREvfnmm+7XzTn2r7/+WomI+vTTT91t3nnnHWUYhtq/f3/EckdkcAUfoqqmpkY+++wzGTFihHubzWaTESNGSGFhYRQzs4ajR4+KiEj79u1FROSzzz6T2tpaj/ns27evdO/enfls4Pbbb5ef/vSnHvMkwvw1x7Jly+T888+Xn/3sZ9K5c2c599xz5fnnn3fHi4qKpLS01GMO09PTJS8vjzkEAHhgHXgaa7qTWKOdxHrrtCFDhsiqVavkm2++ERGRzZs3y0cffSSjR48WkZY1F40159gLCwulbdu2cv7557vbjBgxQmw2m3z88ccRzxnhlRDtBNCyHTp0SJxOp2RkZHhsz8jIkK1bt0YpK2twuVxy5513ytChQ+Wss84SEZHS0lJJSkqStm3berTNyMiQ0tLSKGQZe15//XX5/PPP5dNPP20SY/7Mffvtt/LMM8/I3XffLffdd598+umncscdd0hSUpLcdNNN7nny9jPNHAIAGmIdeBJrupNYo53Geuu0qVOnSnl5ufTt21fsdrs4nU556KGHZNy4cSIiLWouGmvOsZeWlkrnzp094gkJCdK+ffu4n5+WiAIfYFG33367bNmyRT766KNop2IZe/fulYkTJ8rKlSvF4XBEOx1Lcrlccv7558vDDz8sIiLnnnuubNmyRZ599lm56aabopwdAADWw5qONVpjrLdOW7Rokbz66quycOFCGTBggGzatEnuvPNOyc7ObnFzAZjhI7qIqo4dO4rdbm/yBKyysjLJzMyMUlaxb8KECf+/vTsPivK84wD+XQWWQxAIwuLBIYpCPIJQIxo5tBE61pBOm4yiCNF64KRBJ8HoJFaNIlaHiJJWjXUUDVY7XrVaI4ZLFAUPpIoUEiLaWgweeHIqv/7h7FteWI544cbvZ2Zn3Od99rl2NL/83n3eB/v370dGRgZ69uyplOt0OtTV1eHWrVuq+lzPR06fPo2KigoMGTIEJiYmMDExQVZWFtasWQMTExM4OTlx/drg7OwMb29vVZmXlxcuX74MAMo68e80ERG1hXEgYzo9xmhqjLf+LzY2FvPmzcP48eMxcOBAREREYM6cOYiPjwfwcq1FU+2Zu06na3Zo0YMHD3Dz5s2f/Pq8jJjgow5lZmYGX19fpKWlKWUNDQ1IS0uDv79/B47sxSQieP/997Fnzx6kp6fD3d1ddd3X1xempqaq9SwuLsbly5e5ngBGjx6Nc+fO4ezZs8rLz88PEydOVP7M9WvdiBEjUFxcrCorKSmBq6srAMDd3R06nU61hnfu3EFubi7XkIiIVF7mOJAxnRpjNDXGW/9XVVWFTp3UaYvOnTujoaEBwMu1Fk21Z+7+/v64desWTp8+rdRJT09HQ0MDXn/99ec+ZnrGOvqUD6Lt27eLVquVzZs3y4ULF2T69Olia2srV69e7eihvXCio6Ola9eukpmZKeXl5cqrqqpKqTNz5kxxcXGR9PR0OXXqlPj7+4u/v38HjvrF1viENhGuX1vy8vLExMRE4uLi5Ntvv5WUlBSxtLSUr776SqmzfPlysbW1lb/97W/yz3/+U8LCwsTd3V2qq6s7cORERPQielnjQMZ0bXuZYzTGW/8XGRkpPXr0kP3798vFixdl9+7d4uDgIHPnzlXq/JTX4u7du5Kfny/5+fkCQD7//HPJz8+XS5cuiUj75h4aGio+Pj6Sm5srR48elb59+8qECRM6akr0DDHBRy+EpKQkcXFxETMzMxk6dKicOHGio4f0QgJg8LVp0yalTnV1tcyaNUvs7OzE0tJSfvWrX0l5eXnHDfoF1zR45Pq17e9//7sMGDBAtFqt9O/fX7788kvV9YaGBlmwYIE4OTmJVquV0aNHS3FxcQeNloiIXnQvYxzImK5tL3uMxnjrkTt37khMTIy4uLiIubm59O7dWz755BOpra1V6vyU1yIjI8PgvxWRkZEi0r6537hxQyZMmCBdunQRGxsbee+99+Tu3bsdMBt61jQiIs/7V4NERERERERERET0dPAZfEREREREREREREaMCT4iIiIiIiIiIiIjxgQfERERERERERGREWOCj4iIiIiIiIiIyIgxwUdERERERERERGTEmOAjIiIiIiIiIiIyYkzwERERERERERERGTEm+IiIiIiIiIiIiIwYE3xE9KNVVVXh17/+NWxsbKDRaHDr1q2OHlKLNBoN9u7d29HDQGZm5nNbqxs3bsDR0RFlZWVP1M748eORkJDwdAZFRERE9JKLiorC22+//Vz62rhxI8aMGfNEbaxbtw7jxo17SiMiomeNCT6iVqxbtw7W1tZ48OCBUnbv3j2YmpoiKChIVVefwCktLW2z3eeR7MnKysKoUaNgb28PS0tL9O3bF5GRkairq3vitpOTk5GdnY2cnByUl5eja9euT2HEP15UVBQ0Gk2zV2hoaIeMRy8oKAizZ89WlQ0fPvy5rVVcXBzCwsLg5ub2RO18+umniIuLw+3bt5/OwIiIiMhoGXNcbChefOONN55Zf2VlZdBoNDh79qyqfPXq1di8efMz61evpqYGCxYswMKFC5Wyw4cPw9PTEzY2NoiIiFD9P8Ht27fh6emJS5cuqdqZMmUKzpw5g+zs7Gc+ZiJ6ckzwEbUiODgY9+7dw6lTp5Sy7Oxs6HQ65ObmoqamRinPyMiAi4sLPDw8ntv4REQVZOlduHABoaGh8PPzw5EjR3Du3DkkJSXBzMwMDx8+fOz+9IFAaWkpvLy8MGDAAOh0Omg0msdu80mFhoaivLxc9frLX/7SYeNpiZmZ2XNZq6qqKmzcuBFTp0594rYGDBgADw8PfPXVV09hZERERGTMjDUu1tu0aZMqXty3b5/BevX19c9qiOjatStsbW2fWft6O3fuhI2NDUaMGAEAaGhoQHh4OGbOnInjx4/j1KlT+PLLL5X68+bNw8yZM+Hq6qpqx8zMDOHh4VizZs0zHzMRPTkm+Iha0a9fPzg7OyMzM1Mpy8zMRFhYGNzd3XHixAlVeXBwMABg69at8PPzg7W1NXQ6HcLDw1FRUQHg0R09fT07OztoNBpERUUBePQf3/j4eLi7u8PCwgKDBw/Gzp07VX1oNBocPHgQvr6+0Gq1OHr0aLNxp6amQqfTYcWKFUqSJjQ0FBs2bICFhQUAYNGiRXjttddUn0tMTFT96ku/jSAuLg7du3dHv379EBQUhISEBBw5cgQajUa5Y9vanPUKCwvxy1/+EjY2NrC2tsbIkSNVd3b//Oc/w8vLC+bm5ujfvz/+9Kc/tfkdabVa6HQ61cvOzq7F+v/+97/x7rvvwtbWFvb29ggLC1O2sqampsLc3LzZHeSYmBiMGjUKwKPtrxMmTECPHj1gaWmJgQMHqhKKUVFRyMrKwurVq5U7xGVlZQbvTu/atQuvvvoqtFot3Nzcmm2HdXNzw7JlyzBlyhRYW1vDxcVFFYwZ8o9//ANarRbDhg1TyvR9Hzp0CD4+PrCwsMCoUaNQUVGBgwcPwsvLCzY2NggPD0dVVZWqvXHjxmH79u2t9klEREQ/fcYaF+vZ2tqq4kV7e3vll3Y7duxAYGAgzM3NkZKS0ma8px/fihUr0KdPH2i1Wri4uCAuLg4A4O7uDgDw8fFRxctNt+jW1tbigw8+gKOjI8zNzfHGG2/g5MmTzeaYlpYGPz8/WFpaYvjw4SguLm71u9q+fbtqa+3169dx/fp1zJo1C6+++ireeustFBUVAQBycnJw8uRJxMTEGGxr3Lhx2LdvH6qrq1vtk4g6HhN8RG0IDg5GRkaG8j4jIwNBQUEIDAxUyqurq5Gbm6sEKPX19ViyZAkKCgqwd+9elJWVKcFKr169sGvXLgBAcXExysvLsXr1agBAfHw8tmzZgnXr1qGwsBBz5szBpEmTkJWVpRrTvHnzsHz5chQVFWHQoEHNxqzT6VBeXo4jR4488fzT0tJQXFyMw4cPY//+/di9ezemTZsGf39/lJeXY/fu3W3OGQCuXLmCgIAAaLVapKen4/Tp05gyZYpypzUlJQW///3vERcXh6KiIixbtgwLFixAcnLyE89Br76+HiEhIbC2tkZ2djaOHTuGLl26IDQ0FHV1dRg9ejRsbW2V7wcAHj58iB07dmDixIkAHm158PX1xYEDB3D+/HlMnz4dERERyMvLA/Bo64W/vz+mTZum3CHu1atXs7GcPn0a7777LsaPH49z585h0aJFWLBgQbNtGwkJCfDz80N+fj5mzZqF6OjoVoO67Oxs+Pr6Gry2aNEifPHFF8jJyVESnYmJidi2bRsOHDiA1NRUJCUlqT4zdOhQ5OXloba2tl1rTERERD9dxhgXt8e8efMQExODoqIihISEtBnvAcD8+fOxfPlyLFiwABcuXMC2bdvg5OQEAEq9b775RhUvNzV37lzs2rULycnJOHPmDPr06YOQkBDcvHlTVe+TTz5BQkICTp06BRMTE0yZMqXV+Rw9ehR+fn7K+27dusHZ2RmpqamoqqpCdnY2Bg0ahPr6ekRHR2P9+vXo3Lmzwbb8/Pzw4MED5Obmtr2QRNSxhIhatWHDBrGyspL6+nq5c+eOmJiYSEVFhWzbtk0CAgJERCQtLU0AyKVLlwy2cfLkSQEgd+/eFRGRjIwMASCVlZVKnZqaGrG0tJScnBzVZ6dOnSoTJkxQfW7v3r2tjvnBgwcSFRUlAESn08nbb78tSUlJcvv2baXOwoULZfDgwarPrVq1SlxdXZX3kZGR4uTkJLW1tap6MTExEhgY2OoYms55/vz54u7uLnV1dQbre3h4yLZt21RlS5YsEX9//xb7iIyMlM6dO4uVlZXqFRcXp9QBIHv27BERka1bt0q/fv2koaFBuV5bWysWFhZy6NAhZW6jRo1Srh86dEi0Wq3qu2pq7Nix8uGHHyrvAwMDJSYmRlWn6XceHh4ub775pqpObGyseHt7K+9dXV1l0qRJyvuGhgZxdHSUtWvXtjiWsLAwmTJlisG+v/nmG6UsPj5eAEhpaalSNmPGDAkJCVF9tqCgQABIWVlZi30SERHRy8EY42KRR/Ggubm5Kl7cs2ePXLx4UQBIYmJim200jvfu3LkjWq1WNmzYYLCuvt38/HxVeWRkpISFhYmIyL1798TU1FRSUlKU63V1ddK9e3dZsWKFao6NY7gDBw4IAKmurjbYd2VlpQCQI0eOqMqzs7PFz89P3NzcZNasWVJXVyefffaZxMTEyPnz52X48OHi6ekpSUlJzdq0s7OTzZs3t75ARNThTJ5rNpHICAUFBeH+/fs4efIkKisr4enpiW7duiEwMBDvvfceampqkJmZid69e8PFxQXAo19nLVq0CAUFBaisrERDQwMA4PLly/D29jbYz3fffYeqqiq8+eabqvK6ujr4+PioyhrfkTOkc+fO2LRpE5YuXYr09HTk5uZi2bJl+MMf/oC8vDw4Ozu3e/4DBw6EmZlZm/XamvPZs2cxcuRImJqaNvvs/fv3UVpaiqlTp2LatGlK+YMHD9o8lCI4OBhr165Vldnb2xusW1BQgO+++w7W1taq8pqaGmWr8MSJEzFs2DD897//Rffu3ZGSkoKxY8cqz0t5+PAhli1bhr/+9a+4cuUK6urqUFtbC0tLy9YXqImioiKEhYWpykaMGIHExEQ8fPhQuYva+E60RqOBTqdrtvW5serqapibmxu81rgtJycnWFpaonfv3qqyxnemAShbuptu3SUiIqKXjzHGxXqrVq3Cz3/+c+W9s7Mzrl27ZrCNtuK9oqIi1NbWYvTo0e3q25DS0lLU19crz8kDAFNTUwwdOlTZPqvXOIbTx/EVFRXKGjem30rbNB5suv23pKQEW7ZsQX5+PgICAhATE4Nf/OIXGDBgAAICAlR9WlhYMBYkMgJM8BG1oU+fPujZsycyMjJQWVmJwMBAAED37t3Rq1cv5OTkICMjQ3lG2/379xESEoKQkBCkpKSgW7duuHz5MkJCQlo9wfbevXsAgAMHDqBHjx6qa1qtVvXeysqqXWPv0aMHIiIiEBERgSVLlsDT0xPr1q3D4sWL0alTJ4iIqr6hhwq3p6/2zFmfKDJEP/cNGzbg9ddfV11rabtA4/H16dOnzTHq+/H19UVKSkqza926dQMA/OxnP4OHhwe2b9+O6Oho7NmzR7VtduXKlVi9ejUSExMxcOBAWFlZYfbs2U/ldGJDmiZENRqNEhgb4uDggMrKyjbb0mg07Wpbv0VEvz5ERET08jLmuFin0zWLGfUJvqZttBXvtRbXPgtNYzgALcaDr7zyCjQaTYvxoN6MGTOQkJCAhoYG5Ofn45133oGlpSUCAwORlZWlSvDdvHmTsSCREWCCj6gdgoODkZmZicrKSsTGxirlAQEBOHjwIPLy8hAdHQ0A+Ne//oUbN25g+fLlyrPXGp82BkD5RVzjE229vb2h1Wpx+fJlJVh6muzs7ODs7Iz79+8DeJSwuXr1KkRECRTOnj37WG23Z86DBg1CcnIy6uvrmyWWnJyc0L17d3z//ffKs+6ehSFDhmDHjh1wdHSEjY1Ni/UmTpyIlJQU9OzZE506dcLYsWOVa8eOHUNYWBgmTZoE4FFwVVJSoroD3Z7Tir28vHDs2DFV2bFjx+Dp6dlmUrM1Pj4+T/XU2/Pnz6Nnz55wcHB4am0SERGR8fopxMVtaSve69u3LywsLJCWlobf/va3zT5vaE5NeXh4wMzMDMeOHVNOr62vr8fJkycxe/bsxx67mZkZvL29ceHCBYwZM8ZgnY0bN8Le3h5vvfWWkgjU3+ivr69Xjbu0tBQ1NTXNfjlJRC8eHrJB1A7BwcE4evQozp49qwoyAgMDsX79etTV1SkPEnZxcYGZmRmSkpLw/fffY9++fViyZImqPVdXV2g0Guzfvx/Xrl3DvXv3YG1tjY8++ghz5sxBcnIySktLcebMGSQlJf3ogybWr1+P6OhopKamorS0FIWFhfj4449RWFionKgVFBSEa9euYcWKFSgtLcUf//hHHDx48LHWpz1zfv/993Hnzh2MHz8ep06dwrfffoutW7cqB0YsXrwY8fHxWLNmDUpKSnDu3Dls2rQJn3/+eat919bW4urVq6rX9evXDdadOHEiHBwcEBYWhuzsbFy8eBGZmZn44IMP8J///EdV78yZM4iLi8NvfvMb1Z3ivn374vDhw8jJyUFRURFmzJiBH374QdWPm5sbcnNzUVZWhuvXrxu8w/rhhx8iLS0NS5YsQUlJCZKTk/HFF1/go48+an2x2xASEoLCwsI279q2V3Z2dovBIREREb18jC0ufhxtxXvm5ub4+OOPMXfuXGzZsgWlpaU4ceIENm7cCABwdHSEhYUFvv76a/zwww+4fft2sz6srKwQHR2N2NhYfP3117hw4QKmTZuGqqoqTJ069YnGHxIS0uKJwhUVFVi6dKlysJqdnR28vLyQmJiI48ePIy0tTbVtODs7G71794aHh8cTjYmInoOOfgggkTHQPyi3f//+qvKysjIBIP369VOVb9u2Tdzc3ESr1Yq/v7/s27ev2YN2P/vsM9HpdKLRaCQyMlJEHh2ikJiYKP369RNTU1Pp1q2bhISESFZWlogYfgixIWfOnJFJkyaJu7u7aLVaeeWVVyQgIED27dunqrd27Vrp1auXWFlZyeTJkyUuLq7ZIRv6BwE3ZuiQjfbMuaCgQMaMGSOWlpZibW0tI0eOVB3ykJKSIq+99pqYmZmJnZ2dBAQEyO7du1ucZ2RkpABo9mr8faDRIRsiIuXl5TJ58mRxcHAQrVYrvXv3lmnTpqkOIBERGTp0qACQ9PR0VfmNGzckLCxMunTpIo6OjvLpp5/K5MmTVetUXFwsw4YNEwsLCwEgFy9eNPjd7dy5U7y9vcXU1FRcXFxk5cqVqr5cXV1l1apVqrLBgwfLwoULW1wT/djXrVunvDfU96ZNm6Rr166qzzU9eKW6ulq6du0qx48fb7U/IiIienkYW1ws0jwebDqXpodhtCfee/jwoSxdulRcXV2VWG7ZsmXK9Q0bNkivXr2kU6dOStzcNLaurq6W3/3ud0pcOmLECMnLy1OuG5pjfn6+El+2pLCwUCwsLOTWrVvNro0fP77ZQRq5ubnSv39/sbe3l8WLF6uujRkzRuLj41vsi4heHBqRJg/hIiIio3bgwAHExsbi/Pnz6NTp8X+ovXbtWuzZswepqalPcXRERERE9Ky98847GDJkCObPn//YbRQWFmLUqFEoKSlp8+A7Iup43KJLRPQTM3bsWEyfPh1Xrlx5onZMTU2V7RtEREREZDxWrlyJLl26PFEb5eXl2LJlC5N7REaCv+AjIiIiIiIiIiIyYvwFHxERERERERERkRFjgo+IiIiIiIiIiMiIMcFHRERERERERERkxJjgIyIiIiIiIiIiMmJM8BERERERERERERkxJviIiIiIiIiIiIiMGBN8RERERERERERERowJPiIiIiIiIiIiIiPGBB8REREREREREZER+x8MpmCJ2r2f1gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import cartopy.crs as ccrs\n", "import cartopy.feature as cfeature\n", "\n", "\n", "def customize_map(ax, cb, label, crs=ccrs.PlateCarree()):\n", " \"\"\"This function customizes a map with projection and returns the plt.axes instance\"\"\"\n", "\n", " ax.gridlines(\n", " crs=crs,\n", " draw_labels=True,\n", " color='.7',\n", " alpha=.6,\n", " linewidth=.4,\n", " linestyle='-',\n", " )\n", " \n", " # add a background_map (default, local image, WMTS...read the doc)\n", " # ax.stock_img()\n", "\n", " # add a labeled colorbar\n", " plt.colorbar(\n", " cb,\n", " ax=ax,\n", " orientation='horizontal',\n", " shrink=0.6,\n", " pad=.05,\n", " aspect=40,\n", " label=label)\n", "\n", " return ax\n", "\n", "# Create meshgrid from data\n", "#x, y = np.meshgrid(xr_swot_raster100.longitude, xr_swot_raster100.latitude) \n", "\n", "# 0. Create Figure and Axes\n", "crs = ccrs.PlateCarree()\n", "fig, axs = plt.subplots(\n", " nrows=1,ncols=2,\n", " subplot_kw={'projection': crs},\n", " figsize=(16,9),\n", " frameon=True,\n", " )\n", "\n", "# 1. plot Water Surface Elevation on map\n", "# plot data on the map with pcolor function\n", "cb0 = axs[0].pcolor(\n", " xr_swot_raster100.longitude,\n", " xr_swot_raster100.latitude,\n", " xr_swot_raster100.wse,\n", " transform=crs,\n", " cmap='cividis',\n", " )\n", "# customize plot with pre-defined function\n", "customize_map(axs[0], cb0, \"Water Surface Elevation (m)\")\n", "\n", "# 2. plot Water Fraction on map\n", "cb1 = axs[1].pcolor(\n", " xr_swot_raster100.longitude,\n", " xr_swot_raster100.latitude,\n", " xr_swot_raster100.water_frac*100,\n", " transform=crs,\n", " cmap='BuPu',\n", " vmin=0,\n", " vmax=100,\n", " )\n", "# customize plot with pre-defined function\n", "customize_map(axs[1], cb1, \"Water Fraction (%)\")\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.10.6 ('geo-env')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" }, "vscode": { "interpreter": { "hash": "c53c0f632c0bd5c80f0fc28f8860901a2b42413fffd8e5b69bb54373659a6ea7" } } }, "nbformat": 4, "nbformat_minor": 2 }